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Wide band gap CsPbBr3 perovskite solar cells are becoming one of the ideal candidates for top cells in tandem solar cells. 

Nevertheless, the defects in CsPbBr3 film prepared by solution deposition method restrict the optoelectronic performance 

of perovskite solar cells. To solve this problem, a strategy of doping a trace amount of PbI2 into CsPbBr3 film synthesized 

by solution deposition is adopted, effectively increasing the average grain size of CsPbBr3 film, decreasing its optical band 

gap, number of surface grain boundary defects and carrier recombination probability. Simultaneously, the PbI2-doped 

CsPbBr3 perovskite solar cells have been successfully prepared. The best conversion efficiency of the CsPbBr3 cells with 

doping PbI2 is 6.46 %, which is higher than the efficiency of the undoped CsPbBr3 devices (5.00 %). This study offers a 

method for manufacturing highly efficient all-inorganic perovskite solar cells. 
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1. INTRODUCTION1 

Organic-inorganic hybrid perovskite solar cell 

(OIHPSC) has become one of the fastest developing 

photovoltaic technologies due to their comprehensive 

advantages such as high performance, low cost and solution 

processability [1 – 4]. The photoelectric conversion 

efficiency (PCE) of laboratory-scale organic-inorganic 

hybrid perovskite devices has increased from 3.8 % to 26 % 

[5], which is comparable to the efficiency of crystalline-

silicon solar cells [6]. Nevertheless, they faces poor 

moisture, heat, and light stability [7, 8]. To address the 

aforementioned problems, all-inorganic perovskites 

(CsPbI3, CsPbBr3, CsPbIBr2 and CsPbI2Br) have been 

successfully synthesized [9 – 11]. Among these perovskites, 

the CsPbBr3 based on a wide band gap (~2.3 eV) has 

attracted a lot of attention owing to its extraordinary 
humidity and thermal stability [12 – 14]. The advanced 

CsPbBr3 cell displays an architecture of 

FTO/Nb2O5/CsPbBr3/Carbon. Compared with the OIHPSC 

device, it significantly simplifies the manufacturing process 

and reduces costs [15]. Thus, more efforts are being made 

to enhance the efficiency of carbon-based CsPbBr3 cell 

without sacrificing its stability. 

The CsPbBr3 film based on large grain size and low 

carrier recombination probability is a key factor for 

enhancing the efficiency of corresponding cell [16, 17]. 

Thus, the preparation of CsPbBr3 film with large grain size 

and low carrier recombination probability is a prerequisite 

to improve device efficiency. To address this problem, the 

strategy of doping foreign ions into CsPbBr3 perovskite 

lattice has been widely investigated. Through partially 

replacing Cs+ at the A-site with Li+, Na+, K+ and Rb+, the 
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grain sizes of CsPbI2Br and CsPbBr3 films can be increased 

to reduce charge recombination [15, 18]. In addition to the 

substitution at A-site, replacing partial Pb2+ at B-site with 

metal ions of the same or different valences can also have a 

passivation effect on the perovskite grains. Moreover, In3+, 

Al3+, Ca2+, Cd2+, Sr2+, Sn2+, Sm3+, Tb3+, Ho3+, Er3+ and Yb3+ 

in MAPbI3 and CsPbBr3 are respectively used to replace 

Pb2+, which increases grain size and reduces non-radiative 

recombination rate [19 – 24]. Compared with isovalent 

substitution, heterovalent substitution can easily result in 

the formation of defect states [19, 25]. So far, there have 

been no reports on the effects of doping iodine ion on the 

structure and optoelectronic properties of CsPbBr3 layer, as 

well as the photovoltaic property of corresponding devices. 

In this study, doping PbI2 can regulate the crystallinity 

of all-inorganic CsPbBr3 film. Meanwhile, the CsPbBr3 

layer prepared by doping PbI2 has a lower optical band gap, 

indicating the absorption of more solar light. In addition, 

the carrier recombination probability of the CsPbBr3 layer 

is reduced after doping PbI2. More importantly, the 

CsPbBr3 cell based on PbI2 achieves a champion efficiency 

of 6.46 %, which is much higher than 5.00 % for the 

undoped CsPbBr3 cell. These findings suggest that doping 

PbI2 offers a novel strategy for improving the quality of 

perovskite and the photovoltaic performance of all-

inorganic CsPbBr3 devices. 

2. EXPERIMENTAL DETAILS 

2.1. Device preparation 

Before manufacturing solar cells, FTO glass was 

thoroughly ultrasonically rinsed with acetone, isopropanol, 

ethanol and deionized water. A uniform and dense Nb2O5 

 



film was prepared on a clean FTO glass substrate by 

magnetron sputtering technology. The detailed information 

is as follows. The vacuum degree and substrate temperature 

for preparing Nb2O5 films are 3 × 10-4Pa and 25 C, 

respectively. The power and time used for sputtering Nb2O5 

are 130 W and 40 min, severally. The undoped CsPbBr3 

layer was manufactured via a multi-step solution deposition 

method. 1 M PbBr2 solution in N,N-dimethylformamide 

(DMF) was deposited on the Nb2O5/FTO at 2000 rpm for 

30 s. Then, the PbBr2 film was heated at 90 ℃ for 30 min. 

Subsequently, 0.07 M CsBr methanol solution was 

deposited on the PbBr2/Nb2O5/FTO at 2000 rpm for 30 s. 

Afterwards, the CsBr film was annealed at 250 ℃ for 5 min. 

The deposition and annealing times of CsBr are both 

4 times. This successfully prepared an excellent CsPbBr3 

perovskite film. The PbI2-doped CsPbBr3 perovskite was 

prepared by adding a certain proportion of PbI2 to PbBr2 

solution. The rest of the process is the same as the above 

program. Eventually, a carbon electrode containing the area 

of 0.09 cm2 was prepared on the CsPbBr2/Nb2O5/FTO 

through scraping carbon paste. 

2.2. Characterizations 

The morphology of the CsPbBr3 layer was gained by 

employing a field-emission scanning electron microscope 

(SEM). The X-ray pattern of the CsPbBr3 layer was 

recorded by utilizing an X-ray diffractometer (XRD). XPS 

spectroscopy can be used to analyze the elemental valence 

states of perovskite layers. The absorption spectra of 

different CsPbBr3 layers were characterized to gain the 

optical band gaps of various CsPbBr3 layers. The time-

resolved PL (TRPL) spectra for CsPbBr3 layers were 

conducted to obtain their carrier lifetimes. The photovoltaic 

parameters of CsPbBr3 solar cells were obtained by J-V 

curves tested under AM 1.5 G (100 mW/cm2). 

3. RESULTS AND DISCUSSIONS 

Fig. 1 a indicates the XRD patterns of different 

CsPbBr3 films. The three typical peaks in all films appeared 

at 15.23°, 21.73° and 30.80°, corresponding to the (100), 

(110) and (200) crystal planes of the CsPbBr3 [26]. In 

addition, there is a diffraction peak of 26.61° in both films, 

corresponding to FTO substrate [27]. No distinct impurity 

phase is found in all CsPbBr3 films. For all CsPbBr3 films, 

the diffraction peak intensity of the (110) crystal plane is 

higher than that of other crystal planes, indicating that the 

CsPbBr3 films have undergone preferential growth. 

Meanwhile, the main peak intensity of the PbI2-doped 

CsPbBr3 film is higher than that of the undoped CsPbBr3 

films, showing the higher crystalline quality of the CsPbBr3 

films with doping PbI2. Fig. 1b and c indicate the enlarged 

XRD spectra of (110) and (200) for the CsPbBr3 without 

and with doping PbI2. The (110) diffraction peak of 

CsPbBr3 layer shifts towards lower angle with the doping 

of PbI2, which attributes to the lattice expansion of 

perovskite induced by iodine ions [28]. Meanwhile, we 

found that the behavior of the (200) diffraction peak is 

consistent with that of the (110) diffraction peak. Fig. 1d 

indicates the Full Width at Half Maximum (FWHM) for 

(110) in different samples. Compared with the undoped 

CsPbBr3 film, the FWHM of the PbI2-doped CsPbBr3 film 

is smaller. This suggests that the CsPbBr3 films with doping 

PbI2 have larger grain sizes. 
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Fig. 1. a – XRD spectra of different CsPbBr3 films; enlarged XRD 

spectra: b – (110); c – (200) for CsPbBr3 without and with 

doping PbI2; d – FWHM of (110) for different samples 

Fig. 2 a indicates the XPS spectra (Br 3d) of various 

CsPbBr3 films. The characteristic peak of CsPbBr3 film 

shifts towards the direction of low binding energy after 

doping PbI2, demonstrating that iodine ions have been 

successfully doped into the CsPbBr3 lattice. This result is 

consistent with the XRD analysis result. Fig.2b indicates 

the XPS spectra (I 3d) of the PbI2-doped CsPbBr3 film. 

From Fig. 2 b, it can be seen that the two characteristic 

peaks indicate that iodine ions are already present in 

CsPbBr3 films. 
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Fig. 2. a – XPS spectra (Br 3d) of various CsPbBr3 films; b – XPS 

spectra (I 3d) of PbI2-doped CsPbBr3 film 

The SEM is commonly used to study the surface 

morphology of CsPbBr3 layer. As seen in Fig. 3, there are a 

relatively uneven grains on the undoped CsPbBr3 films. 

However, more uniform grains existed on the PbI2-doped 

CsPbBr3 films. Clearly, the PbI2-doped CsPbBr3 layer has a 

larger average grain size compared with the undoped 

CsPbBr3 layer, showing that doping PbI2 can promote the 

growth of CsPbBr3 films. Additionally, we also observed 

that the CsPbBr3 layers with doping PbI2 have fewer grain 

boundaries. The aforementioned results are beneficial for 



improving the photovoltaic performance of CsPbBr3 cells 

[29]. 
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Fig. 3. Surface SEM images: a – undoped CsPbBr3 film; b – PbI2-

doped CsPbBr3 film 

In order to investigate the optical absorption properties 

of different CsPbBr3 layers, we conducted UV-VIS 

spectroscopy tests. As seen in Fig. 4, the light absorption of 

the PbI2-doped CsPbBr3 layer is stronger in comparison to 

that of the undoped CsPbBr3 layer. The absorption 

enhancement may be attributed to the high crystallinity 

based on few grain boundaries for the PbI2-doped CsPbBr3 

layer [30, 31]. In addition, the absorption edge of PbI2-

doped device exhibits a red shift phenomenon compared 

with undoped devices. This indicates that the optical band 

gap of PbI2-doped devices is smaller. The above analysis 

results suggest that doping PbI2 reduces the optical band 

gap of CsPbBr3 layer. The reduction of the band gap can 

facilitate the more absorption of the photons for CsPbBr3 

cells, thereby generating many electron-hole pairs within 

the device. Ultimately, this effectively improves the short-

circuit current density of the CsPbBr3 device. 

 

Fig. 4. Absorption spectra of undoped CsPbBr3 film and PbI2-

doped CsPbBr3 film 

As shown in Fig. 5, TRPL measurements for different 

CsPbBr3 samples grown on FTO substrates were conducted 

to investigate carrier dynamics and carrier lifetime. The 

carrier lifetime can be well obtained by Eq. 1: 

𝑓(𝑡) = 𝐴1𝑒𝑥𝑝(
−𝑡

𝜏1
) + 𝐴2𝑒𝑥𝑝(

−𝑡

𝜏2
) + 𝐵, (1) 

where τ1 and τ2 reflect the slow and fast decay time 

constants, whilst A1, A2 are the fractional amplitudes of τ1 

and τ2, separately. The average carrier lifetime (τave) can be 

calculated to ascertain the entire recombination process, as 

shown by Eq. 2: 

𝜏𝑎𝑣𝑒 =
∑𝐴𝑖𝜏𝑖

∑𝐴𝑖
. (2) 

The undoped CsPbBr3 layer has an τave value of 

16.48 ns whereas an obviously improved τave value of 

36.03 ns can be detected for the PbI2-doped CsPbBr3 layer. 

The enhancement of the τave value reveals that the carrier 

recombination probability and defect density in the 

CsPbBr3 with doping PbI2 are lower, which contributes to 

the process of photo-induced carrier transport and the final 

cell performance [32]. 
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Fig. 5. TRPL spectra of a – undoped CsPbBr3, b – PbI2-doped 

CsPbBr3 films deposited on FTO substrates 

To investigate the photovoltaic performance of 

CsPbBr3 cells, we first prepared a fully structured device.  

Our device consists of FTO glass substrate, Nb2O5 

electronic transport layer, CsPbBr3 absorption layer and 

carbon electrode. It is worth noting that there is no 

expensive hole transport layer in our device, which greatly 

saves the preparation cost of the device. After preparing the 

complete CsPbBr3 device, we conducted J-V tests on 

different devices. Fig. 6 a and Table 1 exhibit the J-V 

characteristics and corresponding photovoltaic parameters 

of different CsPbBr3 cells, respectively.  
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Fig. 6. a – J-V curves of CsPbBr3 cell with different doping 

amount of PbI2; b – average efficiency of CsPbBr3 cell 

without and with doping PbI2 

Table 1. Photovoltaic parameters of CsPbBr3 cell with different 

doping amount of PbI2 

Samples  Voc, V Jsc, mA/cm2 FF, % PCE, % 

0 mg PbI2  1.406 4.97 71.59 5.00 

5 mg PbI2 1.445 5.94 75.22 6.46 

10 mg PbI2 1.379 4.63 70.51 4.50 

The CsPbBr3 cell with 0mg PbI2 yields a relatively low 

efficiency of 5.00 %, coupled with an open-circuit voltage 

(Voc) of 1.406 V, a short-circuit current density (Jsc) of 

4.97 mA/cm2 and a fill factor (FF) of 71.59 %. It is evident 



that the photovoltaic performance of the solar cells with 

5 mg PbI2 outperform the unchanged devices. This marked 

improvement of Jsc, Voc and FF can be attributed to 

enhanced crystallinity, reduced band gap, and decreased 

carrier recombination [33, 34]. The optimal incorporation 

of PbI2 culminates in the champion cell, boasting an 

efficiency of 6.46 %, a Voc of 1.445 V, a Jsc of 5.94 mA/cm2, 

and an FF of 75.22 %. However, excessive incorporation of 

PbI2 can reduce the photovoltaic performance of the device. 

Therefore, the optimal doping amount of PbI2 is 5 mg. 

Fig. 6 b shows the average efficiency of the CsPbBr3 cell 

without or with doping PbI2. After incorporating PbI2, the 

average efficiency of CsPbBr3 cell (10 device) is 6.08 %, 

which shows the good repeatability of the device. 

Fig. 7 a shows the Stability of CsPbBr3 cell with 

doping PbI2. The PbI2-doped device is stored under 

approximately 80 % humidity and 25 C. The PbI2-doped 

device exhibits 97 % of initial efficiency, indicating 

superior stability of our device. 

 

Fig. 7. Stability of CsPbBr3 cell with doping PbI2 

According to previous reports [35], it has been found 

that iodine doping can improve the purity and phase 

stability of single crystal CsPbBr3 films and help regulate 

the optical band gap. In our study, iodine doping can 

improve the crystallinity of polycrystalline CsPbBr3 films, 

reduce their optical bandgap, and decrease their carrier 

recombination probability. More importantly, the efficiency 

of polycrystalline CsPbBr3 solar cell has been significantly 

improved after iodine doping. 

4. CONCLUSIONS 

The PbI2-doped all-inorganic CsPbBr3 film and 

corresponding cell have been successfully prepared. The 

XRD and XPS tests indicate that iodine ions have been 

successfully doped into the lattice of CsPbBr3 film. After 

PbI2 incorporation, the crystallinity of CsPbBr3 film is 

better and its optical band gap is smaller. Meanwhile, the 

PbI2-doped CsPbBr3 film possesses a less number of grain 

boundary defects and a lower probability of carrier 

recombination. Compared with the undoped CsPbBr3 cell, 

the PbI2-doped CsPbBr3 cell achieves an outstanding 

efficiency of 6.46% with a Voc of 1.445V, a Jsc of 

5.94mA/cm2 and a FF of 75.22%. This work provides a 

reasonable and effective process for the manufacturing of 

all-inorganic CsPbBr3 cell.
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