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The S-doped g-C3N4 (SCN) was prepared by thermal condensation method using thiourea as a precursor, and then the 

phosphotungstic acid (PTA)/SCN composite photocatalytic material was prepared by reflux adsorption method. The 

photocatalytic degradation experiments of Rhodamine B showed that SCN20 had the highest photocatalytic degradation 

rate (74 %), which was 1.9 times and 3.5 times higher than that of PTA (39 %) and SCN (21 %), respectively. The 

photocatalytic degradation rate of SCN20 was increased by 5 times compared to that of SCN, indicating that the 

photocatalytic degradation performance of the composite material was significantly improved. The photocatalytic 

degradation mechanism study revealed that O2
- was the main active species in the photocatalytic degradation of 

Rhodamine B, and the addition of PTA helped the effective separation of electrons-hole and improved the photocatalytic 

degradation rate. Our PTA/SCN is proposed as an environmental safety tool due to several advantages, such as low cost, 

convenient preparation, and efficient photocatalytic degradation of Rhodamine B. 
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1. INTRODUCTION 

With the development of society and the progress of 

technology, water environment pollution, has seriously 

threatened human life and health, especially the discharge 

of organic dyes in water [1]. Semiconductor photocatalysis 

technology has the advantages of low energy consumption, 

high efficiency, and good chemical stability (e.g., ZnO [2], 

TiO2 [3], WO3 [4], CdS [5], etc.), and is considered a green 

and low-cost technology for organic pollutant degradation 

[6, 7]. Carbon nitride (g-C3N4), an organic polymeric 

semiconductor material with a graphite-like structure, has 

the advantages of suitable forbidden band width (2.7 eV), 

non-toxicity, good chemical stability, and easy mass 

production, which has attracted much attention in 

photocatalytic degradation of organic pollutants [8 – 11]. 

However, g-C3N4 suffers from a high electron-hole 

complexation rate, low photoavailability, and small 

specific surface area, which limit its further application in 

the field of photocatalytic degradation of organic dyes 

[12 – 14]. Therefore, the non-metal/metal doping method, 

shape modulation, and construction of heterojunctions can 

improve the performance of g-C3N4 for photocatalytic 

degradation of organic dyes [15, 16]. Among them, non-

metallic S-doped g-C3N4, which can improve the electrical 

conductivity and reduce the electron-hole complexation 

chance, and thus improve the photocatalytic degradation 

performance, has received a lot of attention [17 – 20]. 

Phosphotungstic acid (PTA) is the most acidic and 

electronegative solid acid with the highest outer oxygen 

atom among many heteropolyacids, and has been widely 

used in photocatalytic oxidation [21 – 23]. However, the 

small specific surface area and the small number of 
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reactive sites of PTA limit the application of 

phosphotungstic acid in photocatalytic oxidation [24 – 27]. 

To overcome the shortcomings of phosphotungstic acid, it 

is generally solidly loaded onto suitable carriers to prepare 

composite photocatalysts, e.g., phosphotungstic acid 

solidly loaded onto TiO2 significantly improves the 

degradation rate of aniline [28]; phosphotungstic acid 

solidly loaded onto g-C3N4 improves the photocatalytic 

degradation of rhodamine B [29]. There is no report on the 

application of phosphotungstic acid solid-loaded onto 

sulfur-doped g-C3N4 (SCN) in photocatalysis. Therefore, 

the fabrication of PTA and SCN heterojunction composites 

to further enhance the activity of photocatalytic 

degradation of rhodamine B (RhB) is of great significance. 

In this paper, a series of PTA/SCN heterojunction 

composite photocatalysts were prepared by the reflux 

adsorption method using SCN prepared by the one-pot 

method as a carrier. The degradation performance of 

PTA/SCN heterojunction composite photocatalysts for 

RhB was investigated, and the photocatalytic degradation 

mechanism was explored. 

2. EXPERIMENTAL 

2.1. Materials and instruments 

Thiourea (analytical pure, Maclean's Reagent Co., 

Ltd.), melamine (analytical pure, Maclean's Reagent Co., 

Ltd.), phosphotungstic acid (PTA, analytical pure, China 

Pharmaceutical Group), rhodamine B (analytical pure, 

China Pharmaceutical Group). 

Xenon lamp (PLS-SXE300, Beijing Porphyry 

Technology Co., Ltd.), UV-Vis spectrophotometer 

(TUG1901, Beijing Pu-Analysis General Instrument Co., 

Ltd.), field emission scanning electron microscope (SEM) 

(JSMG 6700F, JEOL, Japan), X-ray diffractometer (XRD) 
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(X ′PERT Pro, Philips, Netherlands), Fourier transform 

infrared spectrometer (FT-IR) (Nicolet 6700, Thermo 

Fisher Scientific Co., Ltd.). 

2.2. Synthesis of SCN 

The thioureas (5 g) were thoroughly ground in an 

agate mortar, then transferred to an alumina crucible, 

sealed with aluminum foil, placed in a Muffle furnace, and 

calcined at 550 ℃ (heating rate: 5 ℃/min-1) for 3 hours. 

After cooling to room temperature naturally, light yellow 

powder SCN was obtained by grinding. 

2.3. Synthesis of PTA/SCN photocatalysts 

A series of PTA/SCN composites were prepared by the 

reflux adsorption method as described below. A certain 

amount of PTA was accurately weighed, dissolved in 

distilled water, and 0.4 g SCN was added with stirring. The 

reaction was stirred at 100 ℃ for 8 h. After the reaction, 

the solvent was evaporated at 70 ℃ and activated at 

110 ℃ for 8 h to obtain x wt.% PTA/SCN composite 

photocatalytic materials (x = 5, 10, 20, 100), labeled as 

SCN5, SCN10, SCN20, SCN100, respectively. 

2.4. Photocatalytic activity 

Using RhB as the target organic dye for degradation, 

0.01 g of PTA/SCN composite photocatalytic material was 

sonicated and dispersed in 100 mL of RhB solution 

(0.1 mg/mL) for 10 min in a dark reaction to reach the 

adsorption-resolution equilibrium. The solution was 

irradiated under a xenon lamp, and 10 ml was sampled 

every 10 min, centrifuged for 20 min (10000 rpm/min), 

and the absorbance of the solution was measured by UV-

vis spectrophotometer at λmax = 554 nm in the supernatant. 

The degradation rate of the photocatalytic degradation 

reaction was calculated from the change in absorbance 

before and after the solution with the formula: 

Photocatalytic removal efficiency (%) = , (1) 

where A0 is the absorbance at initial time t = 0 min, At is 

the absorbance of RhB solution after t min of illumination 

time. 

3. RESULTS AND DISCUSSION 

3.1. XRD analysis 

The crystal structure of the photocatalytic material was 

characterized by XRD, and the results are shown in Fig. 1. 

The characteristic diffraction peaks of SCN in Fig. 1 are at 

2θ = 13.2° and 27.5°, where the 13.2° corresponds to a 

crystallographic surface index of (100), which is 

characteristic of melon-like substances, and the 27.5° 

corresponds to a crystallographic surface index of (002), 

which is characteristic of interlayer stacking of aromatic 

substances. This indicates that SCN has a graphite-like 

structure [30]. The characteristic peak of SCN is slightly 

shifted towards a lower angle compared to the two 

characteristic peaks of pure g-C3N4, which may be related 

to the substitution of sulfur in the lattice atoms of carbon 

nitride [31]. In the XRD pattern of SCN20, it was observed 

that the intensity of the characteristic diffraction peak of 

melon analogues at 13.2° was weakened, mainly because 

PTA would react with the amino group of melon analogues 

in SCN, which in turn led to a decrease in the content of 

melon analogues [32]. Meanwhile, the characteristic 

diffraction peaks of PTA with a Keggin-type structure 

were observed at 10.4°, 21.4°, and 26.4°, which indicated 

that PTA still kept the Keggin-type structure after 

compounding with SCN and was uniformly solidly loaded 

onto SCN. With the increase of solid loading, the intensity 

of the diffraction peak corresponding to PTA did not show 

a significant enhancement, indicating that SCN played a 

good dispersing effect on PTA. In the XRD pattern of 

SCN20, the characteristic diffraction peak of SCN located 

at 27.5° is shifted to the right by about 1.2° (26.3°) after 

the solid loading of PTA, which is due to the disruption of 

the layer spacing of SCN by PTA, which in turn leads to an 

increase in the specific surface area. 
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Fig. 1. XRD patterns of SCN, PTA, and serial PTA/SCN 

composites with different PTA content (SCN5, SCN10, 

SCN20, SCN100) 

3.2. IR analysis 

Fig. 2 shows the FT-IR spectra of SCN, PTA, SCN5, 

SCN10, SCN20, and SCN100. 
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Fig. 2. FT-IR spectra of SCN, PTA, and serial PTA/SCN 

composites with different PTA content (SCN5, SCN10, 

SCN20, SCN100) 

In the FT-IR spectra of pure PTA, the characteristic 

absorption peaks of PTA at 1083 cm-1, 990 cm-1, 893 cm-1, 

and 805 cm-1 are attributed to the vibrational absorption of 

P-O, W-O, W-Ob-W, and W-Oc-W, respectively [32]. In 

the FT-IR spectrogram of SCN, the absorption peaks at 

809 cm-1 and 889 cm-1 correspond to the C-N stretching 

vibrational characteristic absorption in the triazine ring, 
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and the absorption peaks at 1240 – 1650 cm-1 correspond to 

the stretching vibrational characteristic absorption of the 

carbon-nitrogen aromatic heterocyclic ring, and the broad 

band at 3100 – 3400 cm-1 corresponds to the stretching 

vibrational absorption of the N-H bond. The sulfur doping 

was revealed by the peak at 705 – cm-1, which was 

attributed to the C-S stretching vibration [33, 34]. 

PTA/SCN photocatalytic materials, the intensity of the 

characteristic absorption peak at  

3100 – 3400 cm-1 is weakened, which is attributed to the 

reaction of PTA with -NH2 in SCN, resulting in the 

decrease of -NH2 content in the PTA/SCN photocatalytic 

material, indicating that PTA and SCN are well 

compounded together in the form of chemical bonding 

[35]. 

3.3. SEM analysis 

Scanning electron micrographs (SEM) of SCN, PTA, 

SCN5, SCN10, SCN20, and SCN100 photocatalytic 

materials, as shown in Fig. 3. Fig. 3 b shows that the PTA 

is an obvious block structure with uneven size, and after 

the solid loading of PTA (Fig. 3 c – f), no obvious PTA 

agglomeration is found, indicating that the PTA has been 

uniformly dispersed onto the SCN. Fig. 3 a shows that the 

SCN exhibits a blocky stacking structure, and after PTA 

solid loading (Fig. 3 c), the SCN still has some blocky 

structure, which is caused by the low solid loading of PTA. 

With the increase of PTA solid loading (Fig. 3 d – f), SCN 

showed a more obvious loose structure, indicating that 

PTA was homogenously dispersed on SCN. Thus, overall 

characterization techniques (XRD, FT-IR and TEM) used 

in this study successfully confirm the presence of S in the 

framework of g-C3N4 and that PTA and SCN are well 

compounded together in the form of a chemical bond. 

 

Fig. 3. SEM images: a – SCN; b – PTA; c – SCN5; d – SCN10;  

e – SCN20; f – SCN100 

3.4. UV-Vis analysis 

Fig. 4 shows the UV-Vis diffuse reflectance spectra of 

different photocatalytic materials. the absorption of SCN, 

PTA, SCN5, SCN10, SCN20, and SCN100 is mainly 

concentrated in the UV region and weakly absorbs visible 

light. As shown in Fig. 4, the absorption boundary of PTA 

is about 437 nm and that of SCN is about 486 nm [35]. 

Compared to PTA, the composite photocatalytic materials 

SCN5, SCN10, SCN20, and SCN100 not only increase the 

light absorption intensity but also red-shift the absorption 

boundary after solid loading of PTA. This is mainly due to 

the increase in specific surface area and the doping of 

SCN, which both increase the light absorption intensity 

[36]. 
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Fig. 4. UV-vis DRS spectra of SCN, PTA, and serial PTA/SCN 

composites with different PTA content (SCN5, SCN10, 

SCN20, SCN100) 

The results of calculating the forbidden band gap (Eg) 

of the photocatalytic material using the equation: Eg = 

1239.9/g, Eg denotes the forbidden band gap width and g 

denotes the absorption boundary, are shown in Table 1 

[19]. Compared with SCN, the forbidden band gap of 

SCN5 and SCN10 did not change significantly. The 

forbidden band width of SCN20 was the smallest, down to 

2.39 eV. A smaller forbidden band gap allows for a red-

shift in the absorption wavelength, which results in better 

absorption of visible light, generating more photogenerated 

electrons and improving photocatalytic efficiency [37]. 

Table 1. The band gap of photocatalysts 

Photocatalytic materials g, nm Eg, eV 

SCN 486 2.55 

PTA 437 2.84 

SCN5 502 2.47 

SCN10 490 2.53 

SCN20 519 2.39 

SCN100 477 2.60 

3.5. Photocatalytic activity 

The photocatalytic activities of SCN5, SCN10, SCN20 

and SCN100 for the degradation of RhB were investigated 

under the irradiation of a 300 W xenon lamp, and the 

results are shown in Fig. 5. After 60 min of light 

irradiation, the degradation rates of RhB were SCN20 

(74 %), SCN100 (61 %), SCN10 (51 %) and SCN5 (34 %), 

respectively. The photocatalytic activity of PTA/SCN 

composite photocatalytic material for the photocatalytic 

degradation of RhB was much higher than that of PTA 

(39 %) and SCN (21 %). The results indicated that SCN20 

had the highest photocatalytic activity, which was mainly 

due to the synergistic catalytic effect between SCN and 

PTA, and the doping of PTA and the increase in specific 

surface area resulted in more active sites on the surface of 

the catalyst. These results suggest that SCN20 is suitable 

for purifying wastewaters contaminated by dyes. 

To further confirm the excellent photocatalytic 

performance of PTA/SCN, the photocatalytic activities of 

several SCN-based photocatalysts were summarized in 

Table 2. Interestingly, although the photocatalytic 
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degradation activity of SCN20 was not outstanding 

compared with the results listed in Table 2. But SCN20 

still showed exciting demanding reaction conditions (i.e., 

high RhB amount (100 mg/L), and short reaction time 

(60 min)). 
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Fig. 5. Photocatalytic degradation RhB of different composites 

The experimental data for the degradation of RhB by 

photocatalytic materials were fitted using the first order 

kinetic equation and the results are shown in Table 3. From 

Table 3, it can be seen that all photocatalytic materials 

degraded RhB following the first order kinetic equation 

[29]. Compared with SCN, the photocatalytic degradation 

rate of RhB degraded by the photocatalytic material 

SCN20 was 5 times higher, indicating that the 

photocatalytic degradation performance of the composites 

was significantly improved. 

For catalysts, in addition to high catalytic activity, 

recyclability is also important. The recyclability of 

PTA/SCN complexes has been investigated. Fig. 6 shows 

the photocatalytic activity of the PTA/SCN complex after 

5 cycles. From the graph, we can see that the degradation 

rate decreases as the recycling number increases, which 

can be attributed to the loss of catalyst during the recycling 

process. 

3.6. Photocatalytic degradation mechanism 

RhB was selected as the degrading organic pollutant 

and the photocatalytic degradation mechanism of SCN20 

was investigated by free radical trapping experiments.  

P-benzoquinone (BQ), isopropyl alcohol (IPA), and 

disodium ethylenediaminetetraacetate (EDTA-2Na) were 

used as O2
-, OH, and hVB

+ trapping agents, respectively, 

and were added (1 mol/mL) before light exposure for 

60 min. The results are shown in Fig. 7. 
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Fig. 6. The cyclic experiment of RhB degradation of SCN20 

catalyst 
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Fig. 7. Influence of different scavengers on the catalytic activity 

of SCN20 

The results showed that the catalytic degradation rate 

decreased significantly when BQ was added, implying that 

O2
- was the main active species in the photocatalytic 

degradation reaction. 

Table 2. Comparison of photoactivity of different SCN-based photocatalysts 

Photocatalyst Pollutant Concentration Degradation time Efficiency  References 

SCN/TiO2 Congo Red 50 mg/L 60 min 97 % [38] 

SCN nanosheets Methyl orange 10 mg/L 4 h 83 % [39] 

SCN nanosheets Methylene blue 10 mg/L 3 h 97 % [40] 

SCN/SiO2 Methyl orange 10 mg/L 210 min 83 % [41] 

SCN/ZnO Ciprofloxacin 20 mg/L 210 min 98 % [42] 

SCN/ZnO Rhodamine B 10 mg/L 80 min 98 % [43] 

SCN/CdS Rhodamine B 10 mg/L 75 min 100 % [44] 

SCN/C3N4 Rhodamine B 10 mg/L 120 min 95 % [45] 

Table 3. Photocatalytic degradation rate constants (k) of RhB by photocatalysts 

Photocatalytic materials SCN PTA SCN5 SCN10 SCN20 SCN100 

K(min-1) ×10-3 1.60 2.30 2.78 4.58 8.79 1.48 

R2 0.979 0.968 0.998 0.976 0.998 0.860 
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Table 4. Effect of scavengers on the degradation of RhB by 

SCN20 

Trapping agents No BQ IPA EDTA-2Na 

R% 74 33 51 52 

Meanwhile, the addition of EDTA-2Na and IPA also 

reduced the degradation rate of RhB, indicating that hVB
+ 

and OH also played a dominant role in the photocatalytic 

degradation of RhB. 

Based on these results, a possible mechanism for the 

photocatalytic degradation of RhB by SCN20 is proposed, 

as shown in Fig. 8. Under visible light irradiation, 

electrons (e-) from SCN migrate from the valence band 

(VB) to the conduction band (CB), leaving a hole (hVB
+) on 

the VB. At the same time, the photogenerated electrons 

generated on the CB can be further transferred to the 

surface and react with O2 to produce superoxide radicals 

(·O2
-), which in turn react with RhB to degrade it into 

small molecules. The vacancies left in the VB can react 

with water to produce hydroxyl radicals (·OH), which can 

directly oxidise RhB to small molecules. As the CB of 

SCN is more negative than that of PTA, and the VB of 

PTA is more positive than that of SCN [46, 47], 

photogenerated electrons will migrate from the CB of SCN 

to the CB of PTA, while the holes stay in the VB of SCN, 

achieving an effective electron-hole separation and 

improving the photocatalytic degradation rate. 

 

Fig. 8. A schematic illustration of the RhB degradation over 

PTA/SCN composite under visible light irradiation 

4. CONCLUSIONS 

A series of PTA/SCN composite photocatalytic 

materials were successfully prepared by a simple 

impregnation method using sulphur-doped g-C3N4 (SCN) 

prepared by the one-pot method as a carrier.XRD, FT-IR, 

SEM and UV-Vis showed that PTA was homogeneously 

dispersed in SCN and solidly loaded in SCN by chemical 

bonding; the forbidden band gap of the PTA/SCN 

composite photocatalytic materials became smaller and 

The PTA/SCN composite photocatalytic material has a 

smaller band gap, which reduces the electron-hole 

complexation rate and enhances the absorption of visible 

light. The photocatalytic degradation of RhB showed that 

different amounts of PTA had a significant effect on the 

photocatalytic degradation rate. Among them, SCN20 

showed the highest photocatalytic degradation rate, which 

was 1.9 and 3.5 times higher than that of PTA and SCN 

respectively. This is because the solid loading of PTA, 

which disrupts the layer spacing of SCN, significantly 

affects the forbidden band gap of the composites, which in 

turn increases the photocatalytic degradation rate. The 

main active species in the photocatalytic degradation of the 

RhB system is ·O2
-, while hVB

+ and ·OH also played a 

dominant role in the photocatalytic degradation of RhB. 

Conclusively, PTA/SCN photocatalytic composites 

showed numerous advantages, such as inexpensive, easy 

preparation, and efficient degradation of dye. These 

characteristics allow PTA/SCN to be a candidate for 

photocatalytic degradation of printing and dyeing 

wastewater. 
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