Structure, Properties and Applications of Diamond Like Nanocomposite (SiO\text{x} Containing DLC) Films: A Review

Šarūnas MEŠKINIS∗, Asta TAMULEVIČIENĖ

Institute of Materials Science of Kaunas University of Technology, Savanorių av. 271, Kaunas LT-50131, Lithuania

http://dx.doi.org/10.5755/j01.ms.17.4.770

Received 14 September 2011; accepted 02 November 2011

The present article reviews current situation on SiO\text{x} containing diamond like carbon (diamond like nanocomposite) films. The overview of different deposition methods and reagents used is presented; chemical composition of different diamond like nanocomposite films is described. Different models of structure of diamond like nanocomposite films are considered. Mechanical, optical, electrical properties as well as surface energy of diamond like nanocomposite films produced by different methods are reviewed and discussed. The survey of different potential and industrial applications of diamond like nanocomposite films is presented.

Keywords: SiO\text{x} containing diamond like carbon, diamond like nanocomposite films.

1. INTRODUCTION

Diamond-like carbon (DLC) is an umbrella term that refers to different forms of amorphous carbon materials that display some of the unique properties of natural diamond [1, 2]. DLC is a mixture of sp\text{2} and sp\text{3} bonded carbon atoms – some kind of the composite material consisting of the sp\text{3} bonded (graphite like) carbon clusters embedded into the sp\text{2} bonded carbon (diamond like) matrix. Hydrogen can be present in these films with an atomic concentration between 0 % and up to 50 %. The DLC acronym was introduced by Aisenberg and Chabot [1] who for the first time have produced amorphous carbon films exhibiting many of the properties of diamond and have stimulated current interest to this field. Due to the room temperature deposition possibility, no limitation of materials (the various forms of DLC can be applied to almost any material that is compatible with vacuum environment), ultrasmooth surface (roughness less than few nm), uniform large area deposition (providing high productivity and low cost), unique and tunable properties of the material (high hardness (10 GPa – 80 GPa)); low friction and high wear resistance; chemical inertness; optical transmittance (transparency for infrared light (60 % –90 %); good thermal conductivity (4 –18 W/cmK); radiation resistance as well as control of the electrical resistivity in very wide range, these films find many applications ranging from “data to beer storage” [2, 3]. At the moment achievements in this field and technology of DLC can be described as a matured technology with global competency. Most of the present industrial applications of DLC can be considered in the category protective coatings [2 – 5].

Along with the change of the sp\text{2} and sp\text{3} bonded carbon ratio and hydrogen content, properties of the DLC films can be further controlled by doping them with different chemical elements or compounds. Particularly SiO\text{x} containing diamond like carbon films (DLC:SiO\text{x}), otherwise diamond like nanocomposites (DLN), were developed in the early 1990s [6]. DLC:SiO\text{x} films received considerable interest due to the substantially reduced stress level, increased thermal stability, high hardness, low friction. Hydrophobicity of the DLN films is comparable with that of Teflon. Dielectric permittivity and refractive index of SiO\text{x} containing DLC is lower than in the case of the undoped DLC and comparable with those of SiO\text{2}, while optical transparency is higher.

This review summarizes studies done on deposition, structure, chemical composition as well as mechanical, optical, electrical, hydrophobic properties of DLC:SiO\text{x} films. Industrial and prospective applications of SiO\text{x}, containing DLC films are considered.

2. SYNTHESIS OF DLC:SiO\text{x} FILMS: DEPOSITION METHODS AND REAGENTS

Radio frequency (RF) capacitively coupled (CCP) plasma enhanced chemical vapour deposition (PECVD) was the most often used DLC:SiO\text{x} deposition method (eg., see [7 – 15]. Application of the pulsed DC CCP PECVD [16], inductively coupled plasma (ICP) PECVD [17–20], hot filament assisted PECVD [21–26], deposition by closed drift (anode layer) ion beam source (CDIBS) [27 – 37], Kaufman ion source [38] and electron cyclotron wave resonance (ECWR) plasma beam source [16, 39 – 41] was reported by different researchers as well. It seems, that such a widely used DLC and metal containing DLC deposition methods as arc evaporation, sputtering and laser ablation are rarely used for synthesis of the DLC:SiO\text{x}.

Only in [42] ion beam sputtering of Si/SiO\text{2} mix; target assisted by hydrocarbon ion beam irradiation was used for growth of SiO\text{x} containing DLC film.

DLC:SiO\text{x} films can be synthesized using different silicon and oxygen containing precursors. These precursors might be gaseous (silane (SiH\text{4}) and oxygen (O\text{2}) mix [43]; tetramethyl silane – TMS ((CH\text{3})\text{4}SiH) and O\text{2} mix [18]) or liquids (hexamethyldisiloxane-HMDSO (C\text{6}H\text{12}OSi\text{2}) [7, 17, 19, 39, 40, 44 – 46], tetraethylorthosilicate-TEOS (Si\text{2}H\text{5}O\text{2}) [8, 16, 46 – 47], hexamethyldisilane-HMDS (C\text{6}H\text{18}Si\text{2}) [9 – 10], mixed siloxane and silazane precursors
[10]. The liquid precursors are more frequently used because of easier handling of the material and variety of choices. Usually the carbon, silicon and oxygen containing vapor is mixed with hydrocarbon gas (methane (CH₄) [8, 45–46], acetylene (C₂H₂) [18]) or transported employing argon (Ar) [16], hydrogen (H₂) [27–28], helium (He) [28–29], oxygen (O₂) [43] gases and etc. Depending on the selection of the precursor, one can get different final composition of the films. Single gaseous precursor mentioned above (SiH₄) is known to be highly flammable and the care must be taken when it is mixed with oxygen during deposition. HMDSO is the most frequently used precursor. The reasons are probably easy usage of HMDSO because of low toxicity and flammability and its high versatility allowing to produce different types of materials [7, 17, 39, 44–45]. It serves as a precursor for C, H, Si and O. HMDSO can be vaporized in room temperature. The mentioned precursors with main characteristics are listed in Table 1.

<table>
<thead>
<tr>
<th>Precursor</th>
<th>Formula</th>
<th>Mol. weight, g/mole</th>
<th>Boiling point, °C</th>
<th>Physical state</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMDSO</td>
<td>C₃H₆OSi₂</td>
<td>162.38</td>
<td>101</td>
<td>Liquid</td>
</tr>
<tr>
<td>HMDS</td>
<td>C₂H₄Si₂</td>
<td>146.38</td>
<td>112</td>
<td>Liquid</td>
</tr>
<tr>
<td>TEOS</td>
<td>SiC₂H₆O₄</td>
<td>208.33</td>
<td>168</td>
<td>Liquid</td>
</tr>
<tr>
<td>Silane</td>
<td>SiH₄</td>
<td>32</td>
<td>−111</td>
<td>Gas</td>
</tr>
<tr>
<td>TMS</td>
<td>(CH₃)₂SiH</td>
<td>74.2</td>
<td>6.7</td>
<td>Liquidified gas</td>
</tr>
</tbody>
</table>

3. STRUCTURE AND CHEMICAL COMPOSITION

The most common techniques used for investigation of the structure and composition of DLC and DLN films are Raman spectroscopy, Fourier Transformed Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS). Combination of these techniques gives comprehensive information about the chemical composition and bonds in these films.

3.1. Chemical composition

Employing XPS one can determine the surface composition of the films. In DLC films, the carbon core C 1s spectra consists of peaks due to sp⁢² (285.2 eV) and sp⁢³ (284.4 eV) bonded carbon, CO-contaminants (286.5 eV) and SiC (283.7 eV) phases. The trace of Si results from the internal sputtering of Si atoms, travelling back through the carbon layer and accumulating on the surface during deposition [48]. The area of each peak is directly related to the concentration of the corresponding phase [49].

It was found that DLC:SiOₓ films consist of carbon, silicon and oxygen, yet it is not possible to determine amount of the hydrogen by XPS technique. Analysing the shape and position of the peaks attributed to the C, Si and O one can determine bonding (C–C, Si–C, O–C–O, Si–O) [8], and quantitative information might be obtained. It was observed that C 1s spectra exhibits nearly symmetric shape centred at around 285.4 eV which was assigned to C–C bonds in carbon matrix in the film [8]. Sometimes additional features (like in DLC) might be observed in the spectra such as Si–C (283 eV), or O–C–O (288.6 eV). Identification of chemical environment can be relatively straightforward for carbon, where the C 1s core level has clearly defined features. In the case of silicon, binding energy shifts in the Si 2p core level cover range of only 4 eV. Therefore, it is often difficult to resolve distinct features by curve-fitting the Si 2p core level [50]. Assumptions were made that all Si atoms in DLC:SiOₓ have a valence of four. The major factor in determining the Si 2p binding energy is the number of oxygen atoms bound to the Si atom. A secondary effect upon the Si 2p binding energy is the various combinations of C and H atoms fulfilling the remaining bonding requirements of silicon, i.e. −H, −CH₂, −CH₃, −CH=CH−, −CH=CH₂. −CH₃ and −CH₂=O− [51]. These bonding configurations may induce shift of the Si 2p binding energy, which is very small compared with the shift caused by oxygen [51]. According to [50] and [51] there could be only four component peaks within the Si 2p envelope: 1) a peak at (101.5 ±0.1) eV, which can be attributed to (CH₃)₃SiO units, 2) at (102.1 ±0.1) eV due to (CH₂)₃SiO₂ units, 3) at (102.8 ±0.1) eV, which can be assigned to CH₃SiO₂ units and 4) at (103.4 ±0.1) eV due to SiO₂ units.

In the case of DLC:SiOₓ deposition from TEOS, it was observed that amount of Si in the films has influence on the position of the Si 2p peak [16]. At small silicon concentrations (<5 at.%), Si 2p envelope can be approximated by two peaks at (101.6 ±0.4) eV (attributed to (CH₃)₃SiO units) and (102.5 ±0.3) eV (attributed to the polymeric siloxane structures). Increasing concentration of silicon, the Si 2p peak is approximated by single peak, and the position of this peak shifts from (102.2 ±0.2) eV (9 at.%–13 at.%) to (102.9 ±0.1) eV (22 at.%). These shifts indicate that at small Si concentrations silicon is present in siloxane structures with transition to silsesquioxane bonding at higher concentrations [16, 46]. Otherwise, when films are formed from HMDSO the C–Si–O–Si–C molecular fragments were the major building blocks in the film [40]. In the case of films formed from HMDSO/H₂, the Si 2p peak was analyzed as superposition of SiC and SiO₂ (x < 2) components [27]. It was also observed that using O₂ gas during deposition the fraction of α-SiO₂ phase increases (increasing O₂ amount in plasma) with decrease of α-C–H phase [43]. At low O₂ fractions, silicon atoms are incorporated into the DLC phase bonded to carbon. However, when the O₂ fraction is increased phase segregation is expected to take place, since Si–O bonds would be favoured compared to Si–C or C–O bonds [43]. From the XPS results one can obtain a conclusion that using most common precursors (TEOS, HMDSO, CH₃SiH₄O₂), the structure of the obtained films consists of two amorphous phases: first one – rich in carbon and hydrogen atoms (DLC); the second one – rich in silicon and oxygen atoms (a-SiO₂).

Results obtained from the FTIR and XPS analysis give further insight into the chemical bonds existing in the films. In the FTIR spectra of hydrogenated DLC, only bands corresponding to the C–H (x = 2, 3) bond vibrations situated in the range (2800–3100) cm⁻¹ are usually observed [47]. Analysing the intensity of these peaks it is possible to determine the sp²/sp³ ratio, but the results might be unreliable due to the fact that only the amount of C–H bonds is determined.
bonds and not C–C bonds is determined and it also depends on the amount of hydrogen in the films [52].

Speaking about IR spectra of DLC:SiO\textsubscript{x} films, it predominantly consists of C–C (1558 cm-1), C–H (2850–3100 cm-1), Si–C (760 cm-1), Si–H (2320 cm-1), and Si–O (874 cm-1) bonds [8–10, 47].

The spectrum of DLC:SiO\textsubscript{x} film, formed from HMDSO/H\textsubscript{2} precursor, is presented in Fig. 1.

Raman spectroscopy was successfully used to analyse DLC:SiO\textsubscript{x} films. Raman spectra of these films are similar to those of DLC films; the main feature is broad peak seen in (1100–1700) cm-1 range [47]. Typical Raman spectra of DLC:SiO\textsubscript{x} films formed from HMDSO/H\textsubscript{2} and HMDSO/He is shown in Fig. 2. The positions of characteristic peaks and additional features are summarised in Table 2.

Raman spectroscopy was successfully used to analyse DLC:SiO\textsubscript{x} films. Raman spectra of these films are similar to those of DLC films; the main feature is broad peak seen in (1100–1700) cm-1 range [47]. Typical Raman spectra of DLC:SiO\textsubscript{x} films formed from HMDSO/H\textsubscript{2} and HMDSO/He is shown in Fig. 2. The positions of characteristic peaks and additional features are summarised in Table 2.

![Fig. 1. FTIR spectra of DLC:SiO\textsubscript{x} film formed from HMDSO/H\textsubscript{2} by CDIBS](image1)

The most intense peak is attributed to the Si–O vibrations, situated around 1000 cm-1 [16]. Si–H stretching vibrations at 2320 cm-1 [10] observed in FTIR spectra were explained by the idea that some Si atoms are surrounded by some organic environment rather than being incorporated in a SiO\textsubscript{x} network [9]. Change of ion beam energy reduces the intensity of this peak [28]. The C–H stretching, like in DLC films, is also important vibration in DLN films. The C–H and Si–O stretching vibrations observed in spectra confirms that films are mainly comprised of the interpenetrating a-C:H and a-Si:O networks [9, 47]. The intensity of the C–H and Si–H peaks can give information about the bound hydrogen in the films [53]. But the most reliable results about hydrogen concentration are obtained using other characterization techniques, such as Rutherford back scattering (RBS) and elastic recoil detection (ERDA). It was reported that DLC:SiO\textsubscript{x} films might contain (20–47) at.% of hydrogen [7, 21].

![Fig. 2. Raman spectra of the DLC:SiO\textsubscript{x} and “conventional” DLC films formed by CDIBS](image2)

3.2. Structure

Raman spectroscopy is a fast and nondestructive tool for characterisation of amorphous carbons as it can give information about the clustering of sp2 phase, the orientation of sp2 phase, the H content [54]. All carbons show common features in their Raman spectra in the (800–2000) cm-1 region, the so-called G and D peaks, which lie at ~1560 cm-1 and ~1360 cm-1, respectively, for visible excitation, and the T peak at ~1060 cm-1, which becomes visible only for UV excitation [54]. The G peak is due to the bond stretching of all pairs of sp2 atoms in both rings and chains. The D peak is due to the breathing modes of sp2 atoms in rings. The T peak is due to the C–C sp3 vibrations [8].

Numerous authors reported shift of the main Raman scattering peak as well as G peak (fitting component) of the DLC:SiO\textsubscript{x} films to the lower wavenumbers in comparison with DLC films [16–17, 40, 55]. In [16] it was explained by sensitivity of the position of G peak to the strength of C–C bonds. Incorporation of SiO\textsubscript{x} clusters gives substitution of C atoms by heavier Si atoms and weakening of C–C bonds due to the linking of C atoms to more electropositive Si atoms [16]. Yet Si atoms in Si–O bonds are even more electropositive which can lead to additional weakening of C–C bonds [16].

It can be seen in Table 2, that reported G peak (or maximum of the main Raman spectra feature) position was in a very wide range – (1455–1544) cm-1. Analysis of the articles where Raman spectra of DLC:SiO\textsubscript{x} and DLC films were measured and studied parallely revealed contrversy – in some studies significant shift of the G peak position to the lower wavenumbers was reported [16–17, 40, 55], while in other cases the shift was negligible [47, 56]. It seems, that in the case of the films deposited from HMDSO vapor alone or from mixtures of the HMDSO with H\textsubscript{2} or He, shift of the G peak can be large (~60 cm-1) [40, 55]. In these films significant atomic concentrations of Si and O was observed as well (Si 20 %–25 %, O 16 %–25 %) [27, 36–37, 40]. Different results were observed in the case of the DLN films deposited from TEOS – compound with bigger number of the O atoms and smaller number of Si atoms in molecule in comparison with HMDSO one (C\textsubscript{8}H\textsubscript{18}SiO\textsubscript{4} vs C\textsubscript{8}H\textsubscript{18}Si\textsubscript{10}O) (Table 1). In the case of the DLC:SiO\textsubscript{x} film deposited from TEOS/H\textsubscript{2}/Ar mixture downshift of the G peak was <10 cm-1, while for
Table 2. G peak positions in Raman spectra of DLN and DLC films

Ref.	G peak (cm\(^{-1}\)) Other lines (DLC:SiO\(_x\)) Exc. wav., nm	
PECVD TEOS/CH\(_4\)	~1510*	514.5
CCP PECVD TEOS/CH\(_4\)	~1525* ~1525–1530*	514.5
DC-PECVD TEOS/Ar	1530–1540 ~1570	514.5
CCP PECVD TEOS/H\(_2\)/Ar	1524, 1526, 1533, 1534, 1538	514.5
PECVD CH\(_4\)/HMDSO	1500 1572–1590 1660	514.4
ICP PECVD HMDSO/O\(_2\)	1528	514.4
PECVD HMDSO	1544	514.4
CDIBS HMDSO/H\(_2\)	1470* 970–1101, 1120–1150, 1650–1700 532	
CDIBS HMDSO/H\(_2\)	1450* 1165, 1270, 1450, 1644, 632.8	
CDIBS HMDSO/H\(_2\)	~1455* 1000	532.8
CDIBS HMDSO	1465–1470*	1445 532.8
CDIBS HMDSO/H\(_2\)	1476 1529	532.8
ECWR HMDSO	1475* 1535*	1173 488
PECVD, Kaufmann ion source HMDSO	1520, 1530–1535	514.5
IBAD Si+SiO\(_2\), target, C\(_2\)H\(_2\)	1529	514.5

* - position of the main Raman peak maximum.

one sample even some shift of the G peak position to the higher wavenumbers in comparison with Raman spectra of DLC was reported [47]. For DLC films deposited from TEOS/CH\(_4\) gas mixture, changes of the G peak position were even smaller in comparison with films synthesized from TEOS/H\(_2\)/Ar [13, 56]. Yet chemical composition of the film deposited from TEOS/CH\(_4\) gas mixture was 57.9 at.% of carbon, 32.8 at.% of oxygen and 9.3 at.% of silicon [13]. While in the case of the films deposited from TEOS/Ar gas mixture even doping by 5 at.% of Si results in downshift of G peak by ~30 cm\(^{-1}\) in comparison with the case of DLC [16]. Further increase of the Si atomic concentration up to 22 at.% results in relatively small (but non-monotonic) additional downshift of the G peak position in 10 cm\(^{-1}\) range [16]. Such a discrepancy rather contradicts to the theory about the shift of Raman spectra G peak position due to the replacement of C atoms by heavier Si atoms.

Alternative description can be done by taking into account other features observed in Raman spectra of DLC:SiO\(_x\) films. In [28, 34, 37, 40] analysing Raman spectra some additional peaks were observed, which can be attributed to the trans-polyacetylene (TPA) chains (see Table 2). Therefore in [28, 37] there were suggested, that shift of the main Raman scattering peak can be explained by appearance of the TPA related peak at ~1450 cm\(^{-1}\) besides G and D peaks and the main feature of the Raman spectra of DLC:SiO\(_x\) films should be fitted by three peaks instead of two. According to this assumption no real significant shift of G peak position take place in DLN films [28].

In [17] Raman peak around 1660 cm\(^{-1}\) was observed. The origin of this peak was explained by the polymeric nature of HMDSO and its tendency to polymerize on the surface as well [17].

In such a way it seems, that in amorphous carbon matrix of DLC:SiO\(_x\) films at least in some cases TPA phase present.

In some studies transmission electron microscopy (TEM) and X-ray diffractometry (XRD) were use for search of the possible nanoparticles and crystallites in DLC:SiO\(_x\) films. No XRD detectable crystallinity was reported for DLC:SiO\(_x\) films deposited by hot filament activated PECVD [26]. Presence of the amorphous SiO\(_x\) particles embedded into the amorphous carbon matrix was revealed by HRTEM for DLC:SiO\(_x\) films deposited by ICP PECVD, while for DLC:SiO\(_x\) films deposited by CCP PECVD no particles was observed [19]. However in [17] crystalline SiO\(_x\) nanoclusters were observed in ICP PECVD synthesized DLC:SiO\(_x\) films.

4. MECHANICAL PROPERTIES

4.1. Residual stress, hardness and Young’s modulus

Internal stress in DLC:SiO\(_x\) films is substantially lower than in DLC films. In [19] stress of the DLN films deposited from HMDSO vapour by ICP PECVD was ~1.5 GPa in comparison with 11 GPa of the DLC deposited from CH\(_4\) gas. However, stress level as high as 12 GPa was reported for DLC:SiO\(_x\) films deposited by lower plasma density CCP PECVD [19]. It was explained by the presence (absence) of the nanoparticles in the case of the DLC:SiO\(_x\) films deposited by ICP and CCP PECVD respectively [19]. In [16] stress in DLN film decreased twice with increase of the Si atomic concentration from 0 % to 10 %. At higher Si atomic concentration (>13 at.%) some local increase of the stress was observed. It was explained by formation of the siloxane-bonded DLC networks and SiO\(_x\) clusters instead of the siloxane network alone [16]. Internal stress of the DLC:SiO\(_x\) films deposited by CDIBS was >2.5 times lower than stress of the DLC films deposited from C\(_2\)H\(_2\) [32]. Due to the decreased stress there is no problem to deposit DLC:SiO\(_x\) films thicker than 1 \(\mu\)m, while in the case of the DLC it is problematic. Synthesis of the DLN films of thickness of several microns [7, 11, 21, 43] and even up to 10 \(\mu\)m [12] was reported.

However hardness and Young’s modulus decrease for DLC:SiO\(_x\) film in comparison with DLC films was...
reported by numerous authors [7, 8, 12, 14, 16, 18, 56]. The only exception was [19]. Young’s modulus of DLC:SiO$_x$ films in all cases was below 160 GPa (see Table 3).

It can be seen in Table 3, that in the case of the CCP PECVD deposited DLC:SiO$_x$ films their hardness exceeded 15 GPa only when CH$_4$ (hydrocarbon gas) was used as transporting gas along with the siloxane based vapour (HMDSO, TEOS) [7–8, 11, 13]. It seems, that in these films content of the SiO$_2$ phase is substantially lower in comparison with ones deposited from the siloxane based vapour alone or HMDSO/Ar (TEOS/Ar) mixture (comparing data from [7, 13, 16] and [12]). In the case of the ICP PECVD deposited DLC film relatively very high hardness (25 GPa–30 GPa) equal to the hardness of DLC films deposited from methane alone was reported in [19].

Such a high hardness was explained by formation of the SiO$_2$ nanoparticles in DLC films, while no nanoparticles was found in DLC:SiO$_x$ films deposited by CCP PECVD [19]. However in [17] hardness of ICP PECVD synthesized DLC:SiO$_x$ films was in 12 GPa–16 GPa range despite presence of the crystalline SiO$_2$ nanoclusters. It should be mentioned, that increase of the plasma density (ion/neutral ratio) results in substantial increase of the hardness of DLC films as well (see e.g. [2]). However, in [17, 18, 20] hardness of DLC:SiO$_x$ films deposited by ICP PECVD was <16 GPa, despite presence of crystalline SiO$_2$ nanoclusters in [17]. Surprisingly hardness of the diamond like nanocomposite films deposited by using another high plasma density synthesis method (deposition by ECWR plasma beam source) did not exceed 11 GPa [39, 41].

Hardness >15 GPa was reported in [22, 24–26] for films deposited by hot filament (electron emission) activated PECVD from different siloxane (vapour) based precursors. However, it should be mentioned, that in [26] >15 GPa hardness was observed for DLC:SiO$_x$ films of chemical composition 18 at.% Si and 7 at.% O and up to 21 GPa hardness for Si and O concentrations less than 5 at.%. Similarly in [21] relatively low Si and O content (C/Si atomic concentration ratio in 0.34–0.67 range, O/C in 0.12–0.18 range) was reported for DLC films deposited by hot filament activated PECVD. Thus it seems, that in this case rather take place changes in chemical reactions during DLC:SiO$_x$ film growth due to the activation of the siloxane molecules dissociation than increase of the plasma density.

Hardness of the DLC:SiO$_x$ films deposited by a closed drift ion source from HMDSO and hydrogen or HMDSO and He gas mixture was in 6 GPa–13 GPa range [28], while XPS study revealed relatively large atomic concentrations in such a films (Si atomic concentration in (18–20) at.% range, O – in (22–27) at.% range) [30]. It is similar to the case of the DLC films deposited by CCP PECVD.

Table 3. Hardness and Young’s modulus of DLC:SiO$_x$ and DLC films

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Deposition method</th>
<th>Reagents used for DLC:SiO$_x$ synthesis</th>
<th>Hardness (GPa)</th>
<th>Young’s modulus (GPa)</th>
<th>Chemical composition of DLC:SiO$_x$ films (at%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[12]</td>
<td>RF CCP PECVD</td>
<td>HMDSO based</td>
<td>7–10</td>
<td>20–30</td>
<td>30 at.% Si, 23 at.% O</td>
</tr>
<tr>
<td>[14]</td>
<td>RF CCP PECVD</td>
<td>HMDSO/Ar</td>
<td>9.8 ±0.7</td>
<td>20±5</td>
<td>88 ±7</td>
</tr>
<tr>
<td>[10]</td>
<td>RF/DC PECVD</td>
<td>HMDSO</td>
<td>12</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>[9]</td>
<td>RF CCP PECVD</td>
<td>HMDSO</td>
<td>12–13</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>[18]</td>
<td>RF CCP PECVD</td>
<td>TEOS/CH$_4$/HMDSO</td>
<td>9–17</td>
<td>20</td>
<td>85–135</td>
</tr>
<tr>
<td>[13]</td>
<td>RF CCP PECVD</td>
<td>TEOS/CH$_4$/Ar</td>
<td>17</td>
<td>170</td>
<td>57.9 % C, 32.8 % O, 9.3 % Si</td>
</tr>
<tr>
<td>[11]</td>
<td>RF CCP PECVD</td>
<td>HMDSO/CH$_2$/Ar</td>
<td>8–25</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>[7]</td>
<td>RF CCP PECVD</td>
<td>HMDSO/CH$_4$</td>
<td>15–23</td>
<td>24</td>
<td>>39 at.% C, <3 at.% O, <12 at.% Si, >46 at.% H (RBS)</td>
</tr>
<tr>
<td>[15]</td>
<td>RF CCP PECVD</td>
<td>CH$_3$/SiH$_4$/O$_2$</td>
<td>10–15</td>
<td>159</td>
<td>>36 % C, <46 % O, <17 % Si</td>
</tr>
<tr>
<td>[16]</td>
<td>Puls. CCP PECVD</td>
<td>CH$_3$/SiH$_4$/O$_2$</td>
<td>9–14</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>[56]</td>
<td>RF CCP PECVD</td>
<td>TEOS/Ar</td>
<td>5.5–6.9</td>
<td>48–63</td>
<td>5–24 at.% Si</td>
</tr>
<tr>
<td>[18]</td>
<td>ICP PECVD</td>
<td>C$_2$H$_4$/TMS/O$_2$</td>
<td>10–12</td>
<td>13.1</td>
<td></td>
</tr>
<tr>
<td>[20]</td>
<td>ICP PECVD</td>
<td>HMDSO/O$_2$</td>
<td>10–13</td>
<td>93–100</td>
<td></td>
</tr>
<tr>
<td>[17]</td>
<td>ICP PECVD</td>
<td>HMDSO</td>
<td>12–16</td>
<td>93–100</td>
<td></td>
</tr>
<tr>
<td>[39, 41]</td>
<td>ECWR plasma beam</td>
<td>HMDSO</td>
<td>6–11</td>
<td>40–80</td>
<td>C/Si 0.34–0.67, O/C 0.12–0.18</td>
</tr>
<tr>
<td>[21]</td>
<td>Hot filament PECVD</td>
<td>Siloxane vapor</td>
<td>15</td>
<td>130</td>
<td>20–35 at.% H, 42–58 at.% C, 15 at.% Si, 7 at.% O (RBS)</td>
</tr>
<tr>
<td>[22]</td>
<td>Hot filament PECVD</td>
<td>Siloxane precursor</td>
<td>8–12</td>
<td>90–160</td>
<td></td>
</tr>
<tr>
<td>[23–24]</td>
<td>Siloxane precursor</td>
<td>12–17</td>
<td>88–128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[26]</td>
<td>Hot filament PECVD</td>
<td>Siloxane precursor</td>
<td>12–21</td>
<td>5–36 at.% Si, 5–17 at.% O</td>
<td></td>
</tr>
<tr>
<td>[28]</td>
<td>CDIBS</td>
<td>HMDSO/H$_2$</td>
<td>8–12</td>
<td>6–13</td>
<td></td>
</tr>
</tbody>
</table>

DLC was deposited at the same technological conditions employing only hydrocarbon gas.
In [26] hardness decreased with increase of the Si and O atomic concentration in film from 17 GPa–21 GPa for film with <5 % Si and <5 % O to the 12 GPa–14 GPa in the case of the DLC:SiO$_x$ film of the composition 36 % Si and 17 % O. The drop in hardness was explained by replacement of C–C bond by siloxane bonds [16]. In [16] hardness of the films with Si concentrations >13 at.% did not decrease any further. It was explained by formation of the composite structure – coexistence of SiO$_x$ and SiO$_x$–DLC in films with Si concentrations >13 at.% [16].

In [16] hardness of DLC:SiO$_x$ film decreased from 17.5 GPa to 9 GPa with increase of the Si concentration from 0 % to 17 %. It seems that increase of the Si concentration above 13 at.% resulted in no further reduction of the hardness with decrease of the stress and was explained by formation of the siloxane-bonded DLC networks and SiO$_x$ clusters instead of the siloxane network alone.

Hardness and reduced modulus of DLC:SiO$_x$ films deposited by RF plasma beam decreased nearly twice with decrease of the C/Si ratio from 2:5 to 1:5 [39, 41].

Hardness and elastic modulus of DLC:SiO$_x$ films deposited by ICP PECVD increased with increase of the substrate bias from 100 V to 400 V from 12 GPa to 16 GPa and from 93 GPa to 100 GPa respectively [17]. In [8] mechanical properties of the DLC:SiO$_x$ film deposited from TEOS/CH$_4$ gas mixture non-monotonically depended on bias voltage – the largest hardness and Young’s modulus was reported for films deposited at −200 V bias voltage. These results were in good accordance with structural changes of the DLC films such as sp3/sp2 bond ratio and hydrogen amount. In [28] hardness of the DLC:SiO$_x$ films deposited from HMDSO/H$_2$ or HMDSO/He gas mixtures non-monotonically depended on ion energy as well. Yet in [15] hardness of DLC:SiO$_x$ films increased from 10 GPa to 15 GPa with increase of the substrate bias from −100 V to −500 V. In [20] hardness of the DLC:SiO$_x$ film deposited by ICP PECVD increased from 10 GPa to 13 GPa with increase of the ICP plasma power from 150 W to 300 W.

Hardness of DLC:SiO$_x$ films non-monotonically depended on HMDSO and CH$_4$ gas flux ratio: the highest hardness of 25 GPa was reported in the case of the flux ratio 0.25, while in the case of the low flux ratio hardness was below 15 GPa and in the case of the high flux rate hardness dropped below 10 GPa [11]. However in [7] hardness of DLC:SiO$_x$ films was lower than hardness of DLC films and decreased with increase of the HMDSO/CH$_4$ ratio, yet decrease of the hardness was relatively small for ratios below 0.3 and hardness of the films was <20 GPa only when HMDSO/CH$_4$ ratio exceeded 0.4. In this case decrease of the Young’s modulus was more substantial – modulus of DLC was 160 GPa, while Young’s modulus of DLC:SiO$_x$ in all cases was reported to be <130 GPa [7]. It should be mentioned, that in [7] Si concentration was <12 at.% and O concentration was <3 at.% even for HMDSO/CH$_4$ flux ratio 0.6. It should be mentioned, that in [18] hardness of the SiO$_x$ containing DLC film non-monotonically depended on chemical composition of the film as well.

It should be mentioned, that hydrogen content in film has significant influence on hardness of the DLC films [2]. It can be seen in 1–5 tables, that various reagents with different hydrogen content were used for synthesis of DLC:SiO$_x$ films. Therefore it can be supposed, that differences in hydrogen content in diamond like nanocomposite films have influence on hardness of DLC:SiO$_x$ layers as well. However, present data on that matter are very fragmented and incomplete (Table 3).

In addition toughness of SiO$_x$ containing DLC films was higher than toughness of the DLC [7, 22], however its dependence of chemical composition of DLC:SiO$_x$ film was non-monotonic [7].

4.2. Coefficient of friction and wear resistance

Coefficient of friction of DLC:SiO$_x$ films in most cases was lower than the friction coefficient of DLC films. Only in [12] friction coefficient of DLC:SiO$_x$ films was reported to be about twice higher than friction coefficient of DLC films. However, in [57] friction coefficient of DLC:SiO$_x$ with steel was about 1.5–2 times lower than friction coefficient of DLC film (0.05–01 and 0.1–0.2 respectively). Friction coefficient of the DLC:SiO$_x$ against WC/Co ball was nearly twice lower than friction coefficient of the DLC [8]. Coefficient of friction of DLC:SiO$_x$ with steel or WC was reported to be in 0.04–0.06 range [10, 58]. In [24] friction coefficient in 0.02–0.05 range was reported, too.

In [26] coefficient of friction of the DLC:SiO$_x$ non-monotonically depended on chemical composition. The lowest reported friction coefficient was in 0.04–0.08 range and the highest – 0.1–0.2. Friction coefficient of DLC:SiO$_x$ increased with substrate bias [8] – friction coefficient <0.05 was observed in the case of the films deposited at −100 V and −200 V bias, while friction coefficient increased >2 times with increase of the substrate bias up to −500 V.

Friction coefficient of the SiO$_x$ containing DLC films depended on applied load [23]. At a normal load of 98 mN (contact stress of 514 MPa), friction coefficient of DLC:SiO$_x$ deposited on Ni substrate steady-state value was 0.061 ±0.002, at 490 mN (875 MPa) friction coefficient was 0.094 ±0.014 and in the case of the applied load of 980 mN (1101 MPa), friction coefficient increased up to 0.283 ±0.020 (it is close to the value of the bare Ni). Increase of the friction coefficient with applied load was reported in [25], too.

It must be mentioned, that the coefficient of friction of DLC:SiO$_x$ films, as measured in air of 50 % relative humidity (RH) using steel counter body was in 0.04–0.08 range and even in humid air of 90 % RH and under water, the coefficient of friction was <0.1 [22]. In [8] friction coefficient of DLC:SiO$_x$ measured under water was slightly higher than friction coefficient measured in air 30 %–40 % RH – no sudden increase of friction coefficient typical for DLC was observed.

Low friction coefficient of DLC:SiO$_x$ films was explained by low surface energy of the DLC:SiO$_x$, implying weak interaction and mutual bonding [57]. However, in [12] friction coefficient of DLC:SiO$_x$ films was higher than friction of DLC film despite low surface energy. In [59] low friction of SiO$_x$ containing DLC films was explained by the interfacial sliding between the DLC:SiO$_x$ film and the friction-induced transfer film adhered to the friction (wear) test ball counterface. The
transfer films generated in humid air were enriched with SiO₂ containing fragments, whereas transfer films formed in dry nitrogen had hydrogenated and long range ordered carbons with practically no SiO₂ fragments [59].

Wear resistance of DLC:SiO₂ was 15–20 times lower in comparison with DLC film deposited from CH₄ gas [12]. Similarly wear rate against steel was substantially higher in the case of DLC:SiO₂ film in comparison with DLC film despite lower friction coefficient of DLC:SiO₂ [57]. In [26] wear resistance of the DLC:SiO₂ films decreased with increased concentration of Si and O. It rather correlated with decreased nanohardness of the films even despite decreased friction coefficient. In [17] wear resistance of the ICP PECVD deposited DLC:SiO₂ films increased with substrate bias in −100 V to −400 V range. In this case wear resistance increased with hardness of the films. It should be mentioned, that differently from DLC films, DLC:SiO₂ films have high wear resistance to the wear in water [22]. It correlates with relatively low friction coefficient of DLC:SiO₂ in water [22].

In general, DLC doping with SiO₂ results in a substantial reduction of the residual stress, lower friction coefficient in dry and moderately humid atmospheres. In such a way substantially thicker films with increased fracture toughness can be synthesized. However, deposition conditions of the DLC:SiO₂ film must be carefully selected to fabricate films with hardness, Young’s modulus and wear resistance in air close to those of DLC film. In such a case along with the ion energy it is very important to achieve high plasma density. Structure and, especially, chemical composition of the films must be carefully optimized as well, because optimum ion energy and high plasma density alone do not ensure fabrication of DLC:SiO₂ films with high hardness (>20 GPa). Therefore, application of the multilayer DLC:SiO₂/DLC films can be advantageous as it was suggested e.g. in [60].

5. OPTICAL PROPERTIES

Evaluation of amorphous semiconductors requires parameterization of the photon energy dependence of the optical constants (refractive index, extinction coefficient) [61]. Hydrogenated amorphous carbon (a-C:H) involves coexistence of sp² and sp³ hybridized carbon sites, hence it has both σ and π electrons. The optical properties of amorphous C films are known to be dominated by π-π* and σ-σ* electronic transitions, along with π-σ* and σ-π* transitions [2,62]. Optical absorption measurements are widely used to characterize the electronic properties of materials, through the determination of parameters describing the electronic transitions such as: band gap, valence band tails and lifetime of excited state, which can be related to disorder in the material network, i.e. bond strength and defects. Several models are commonly used to determine the optical properties of amorphous semiconductors and dielectrics in the energy range of interband transitions [61]. Such parameters as optical band gap E_g (Tauc gap), energy E_{opt} and Urbach energy E_U are used to describe properties of amorphous carbon.

The incorporation of silicon and oxygen impurities in the DLC films causes change in their optical properties (optical band gap, refractive index). Increase of the optical bandgap as well as shift of absorbance edge and drastic increase of transparency of the films was reported (see Fig. 3) [18, 29, 63, 64].

![Fig. 3. Absorption coefficient dependence on the photon energy](image)

Table 4. Optical properties of SiO₂ incorporated DLC films

<table>
<thead>
<tr>
<th>Deposition method and precursor</th>
<th>E_{opt}, eV</th>
<th>n</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICP-CVD; CH₄/TMS/O₂</td>
<td>2.08–2.32</td>
<td>1.78</td>
<td>[18]</td>
</tr>
<tr>
<td>DC PECVD; TEOS/Ar</td>
<td>1.1–3.3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PECVD; CH₄/SiH₂O₂</td>
<td>–</td>
<td>1–1.3</td>
<td>–</td>
</tr>
<tr>
<td>RF PECVD; CH₄/SiH₂O₂</td>
<td>1.8–3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>RF PECVD; CH₂/HMDSO</td>
<td>–</td>
<td>2–2.1</td>
<td>1.97</td>
</tr>
<tr>
<td>CDIBS; HMDSO/H₂</td>
<td>2.09–2.74</td>
<td>0.8–1.7</td>
<td>1.85–1.98</td>
</tr>
<tr>
<td>CDIBS; HMDSO/He</td>
<td>2.19–2.45</td>
<td>–</td>
<td>1.85–2.01</td>
</tr>
<tr>
<td>CDIBS; HMDSO/H₂</td>
<td>3.12</td>
<td>–</td>
<td>1.7</td>
</tr>
<tr>
<td>CDIBS; HMDSO/C₂H₂</td>
<td>1.6</td>
<td>–</td>
<td>2.1</td>
</tr>
<tr>
<td>CDIBS; HMDSO/H₂</td>
<td>3.12</td>
<td>–</td>
<td>1.8</td>
</tr>
<tr>
<td>CDIBS; HMDSO/H₂/Ar</td>
<td>3.21</td>
<td>–</td>
<td>1.8</td>
</tr>
<tr>
<td>CDIBS; HMDSO/H₂/N₂</td>
<td>3.51–3.58</td>
<td>–</td>
<td>1.7–1.8</td>
</tr>
<tr>
<td>CDIBS; HMDSO–</td>
<td>–</td>
<td>2.1–2.5</td>
<td>–</td>
</tr>
<tr>
<td>CDIBS; HMDSO</td>
<td>1.45–2.44</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Optical band gap of DLC:SiO₂ films can be changed in a wide region from 1.1 eV to 3.3 eV, while refractive index was reported to be in 1.62 – 2.5 range (see Table 4). The band gap and refractive index of DLC:SiO₂ films depends on the deposition energy and precursor/carrier gas used during process. The decrease of refractive index with increase of ion beam energy was observed, while optical
band gap showed non monotonous dependence on the ion beam energy [29].

It was reported that optical band gap increases with the increase of oxygen and silicon content in the films. This is due to incorporation of Si–O bonds in the DLC films, since SiO₂ network has wider band gap compared to Si-C network [18]. Similarly to the dependence of the hardness on the silicon content, the band gap of the films is also dependent on the silicon content in the films. In [16] it was observed that at low Si concentrations the band gap is around 1.1 eV – 1.5 eV, and only when Si content exceeds 13 at.%, the band gap increases to 3.3 eV. The increase of optical band gap of DLC films with incorporated separately oxygen or silicon was also observed but it was much lower compared to DLC:SiOₓ [43]. These results confirm that optical band gap in DLC:SiOₓ films is governed by existence of segregated phases of SiOₓ-DLC and SiOₓ in the films [16]. The refractive index of DLC:SiOₓ films might be as low as 1.62 [15, 18, 64], because softer and less-stressed a-SiOₓ network reduces density of the DLC:SiOₓ films [18]. The band gap and refractive index of the films strongly depends on the deposition conditions of DLC:SiOₓ. In [15] the influence of the bias voltage was determined. It was observed that refractive index increases and band gap decreases with increase of self-bias voltage. The observed increase of the refractive index is related to the increased carbon density of the amorphous network which shortens the optical gap as bias voltage is increased [15]. Two effects contributing to the reduction of the optical gap and increase of refractive index may take place when bias voltage is increased to more negative values: 1) a relative change from SiOₓ rich phase to a DLC-rich one; 2) an increase of sp² character of carbon bonds, in a similar way to what occurs in case of DLC films [15].

6. ELECTRICAL AND DIELECTRIC PROPERTIES. THERMAL CONDUCTIVITY

In several studies DLC:SiOₓ films were investigated as a potential low dielectric constant insulator. Dielectric permittivity of DLC:SiOₓ films deposited by CDIBS is in 3 – 3.8 range [31, 34] – that is lower than dielectric permittivity value of SiO₂ (3.9 – 4.2 [65]). Dielectric breakdown strength routinely was in (1 – 2) MV/cm range [31, 34, 66]. It depended on substrate used for deposition of DLC:SiOₓ film (Ti, Si, Al, Cr) [35]. Such dependence was described by different structure of the films as well as different roughness of the used substrates [34]. It should be mentioned, that in [66] for some DLC:SiOₓ coatings breakdown strength as high as 500 MV/cm was reported.

The main charge transfer mechanisms of DLC:SiOₓ film was reported to be space charge limited current with exponential or Gaussian trap distribution [67] and Poole- Frenkel emission in [34].

Thermal conductivity of DLC:SiOₓ films was 0.76 W/cmK [68]. It is slightly higher than thermal conductivity of the hydrogenated DLC films – (0.56 – 0.69) W/cmK [69]. (0.3 – 0.5) W/cmK [70]. However, thermal conductivity of the DLC:SiOₓ films is lower than thermal conductivity of the hydrogenated tetrahedral amorphous carbon and tetrahedral amorphous carbon (sp² bonded carbon amount ≥70 %) ((0.77 – 1.3) W/cmK and (1.41 – 5) W/cmK respectively [69, 71]) as well as thermal conductivity of the silicon dioxide ((1 – 1.5) W/cmK [71]).

7. SURFACE FREE ENERGY AND CONTACT ANGLE WITH WATER

Surface free energy (contact angle with water) of DLC:SiOₓ films is reported to be in relatively wide range depending on the deposition conditions as well as chemical composition of the synthesized film. It can be seen in Fig. 4 and Table 5, that minimum contact angle with water values reported by different authors was slightly below value typical for undoped hydrogenated DLC films (56°) [15], while maximum reported contact angle of DLC:SiOₓ film was close to the contact angle of such a highly hydrophobic film as Teflon (PTFE) (100°) [12, 14]. These highly hydrophobic DLC:SiOₓ films were moderate hard (7 GPa – 10 GPa) [12, 14]. By combining nano-scale surface roughening with a hydrophobic a-C:H:Si:O coating, the super-hydrophobic surface with a wetting angle around 160° was fabricated [72]. For DLC:SiOₓ films deposited by pulsed CCP PECVD from TEOS, the dispersive surface energy component decreased (increased contact angle with water) when Si concentration was (9 – 14) at.%, while slight increase was observed for Si concentrations below 9 at.% [46]. However in [37] contact angle decreased with the increase of the silicon concentration up to (20 – 23) at.% range. Wetting angle of DLC:SiOₓ film deposited by RF PECVD from CH₃SiH₄/O₂ gas mixture decreased from 72° to 64° with increase of the oxygen concentration in plasma from 0 % to 5 % [43]. However, it should be mentioned, that even in the case of the film deposited from CH₃SiH₄ gas mixture atomic oxygen concentration in synthesized DLC film was about two times higher than concentration of the silicon (~16 at.% and ~8 at.% respectively).

Fig. 4. The dependence of the contact angle with water of DLC:SiOₓ films on O/Si atomic concentration ratio. O/Si = 0 point refer to Si containing DLC film

No dependence of the contact angle of the DLC:SiOₓ film deposited by a CDIBS from HMDSO vapour on O concentration at constant atomic concentration of the Si
was observed in [37]. In [12] there was reported, that addition of oxygen to the Si containing DLC film reduces surface free energy, as long as the O concentration in the coating is kept below a critical concentration of approximately 35 at.\% when Si atomic concentration is ~30 at.\%. With such O incorporation the dispersive component can be reduced significantly from 31 mN/m to 23.5 mN/m. The reduction of the dispersive component is correlated with a slight increase of the polar component (2.0 mN/m to 3.7 mN/m), because oxygen is partly incorporated into the network, with a polar binding type like Si-OH [12]. For O concentrations >35 at.\%, a significant increase of the surface free energy as a result of the increase of the polar component was reported [12]. Similarly in [37] non-monotonic dependence of the contact angle on O/Si atomic concentration ratio was observed with maximum contact angle at O/Si ratio ~1.1.

Table 5. Surface free energy, contact angle with water and chemical composition of DLC:SiO\textsubscript{x} films

<table>
<thead>
<tr>
<th>Deposition method and precursor</th>
<th>Surface energy (mN/m)</th>
<th>Contact angle with water, °</th>
<th>Chemical composition (at, %)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP PECVD</td>
<td>18.4</td>
<td>~110</td>
<td>PTFE</td>
<td>[12]</td>
</tr>
<tr>
<td>HMDSO</td>
<td>24</td>
<td>100</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>~72</td>
<td>49</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>90</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>23.5</td>
<td>90</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>CCP PECVD/HMDSO/Ar</td>
<td>22.9</td>
<td>101</td>
<td>~1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>64</td>
<td>52</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>72</td>
<td>76</td>
<td>16</td>
</tr>
<tr>
<td>CCP PECVD/CH\textsubscript{4}/SiH\textsubscript{4}/O\textsubscript{2}</td>
<td>–</td>
<td>56</td>
<td>37</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>64</td>
<td>51</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>62</td>
<td>65</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>59</td>
<td>68</td>
<td>24</td>
</tr>
<tr>
<td>CCP PECVD/HMDSO/Ar</td>
<td>101.8</td>
<td>–</td>
<td>–</td>
<td>[72]</td>
</tr>
<tr>
<td>CCP PECVD/TEOS</td>
<td>–</td>
<td>89</td>
<td>60</td>
<td>22</td>
</tr>
<tr>
<td>TEOS/Ar</td>
<td>–</td>
<td>91</td>
<td>60</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>90</td>
<td>61</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>87</td>
<td>68</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>85</td>
<td>72</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>89</td>
<td>60</td>
<td>22</td>
</tr>
<tr>
<td>CDIBS</td>
<td>–</td>
<td>67</td>
<td>55.32</td>
<td>23.83</td>
</tr>
<tr>
<td>HMDSO/H\textsubscript{2}</td>
<td>–</td>
<td>67</td>
<td>51.34</td>
<td>27.02</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>70</td>
<td>57.2</td>
<td>22.55</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>65</td>
<td>56.12</td>
<td>22.12</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>61</td>
<td>55.9</td>
<td>21.74</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>67</td>
<td>55.32</td>
<td>23.83</td>
</tr>
<tr>
<td>CDIBS</td>
<td>–</td>
<td>63</td>
<td>57</td>
<td>20</td>
</tr>
<tr>
<td>HMDSO</td>
<td>–</td>
<td>63</td>
<td>59</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>62</td>
<td>61</td>
<td>16</td>
</tr>
</tbody>
</table>

It seems, that surface free energy of the films deposited from organosilicon vapour (HMDSO) is lower in comparison with surface energy of the film deposited from the mixture of TMS/O\textsubscript{2} [12].

Some dependence of contact angle on ion energy used for deposition of the film was reported in [15]. Weak dependence of contact angle on deposition energy (bias voltage) was observed – the highest contact angle was observed in the case of the film with the highest sp3/sp2 ratio (highest stress level).

It seems, that different studies present rather controversial data about the dependence of the contact angle with water on chemical composition of DLC:SiO\textsubscript{x} films. Complex analysis of the all reported data revealed no clear dependence of the contact angle on Si, O or C atomic concentration alone. The contact angle vs O/Si atomic concentration ratio is presented in Fig. 4. It can be seen, that according to Fig. 4 and [12] for DLC:SiO\textsubscript{x} films deposited by CCP PECVD the highest contact angle with water (~100°) is observed when O/Si ratio is close to 1. Further increase of the O/Si ratio results in nearly linear decrease of the hydrophilicity of the film. In the case of the DLC:SiO\textsubscript{x} films deposited by closed drift ion beam source, increase of the O/Si atomic concentration ratio up to ~1.1 resulted in increase of the contact angle. It seems that in this case some small peak of the hydrophobicity at O/Si ratio ~1.1 can be observed. The observed results are in good accordance with explanation suggested in [46], that changes of the surface energy of DLC:SiO\textsubscript{x} films are related to transition of the chemical structure of the film from siloxane (O/Si ratio ~1) to silsesquioxane (O/Si ratio ~1.5) [16, 46] as well as formation of the SiO\textsubscript{2} phase [16]. Differences between the contact angle of the DLC:SiO\textsubscript{x} films deposited by CCP PECVD and CDIBS probably can be explained by higher ion energy during deposition in the case of the ion beam synthesis, because CDIBS usually operates in >300 eV ion beam energies range [28] what is substantially more than 100 eV energy optimum for deposition of the DLC films [2].

8. APPLICATIONS

Diamond like nanocomposite (DLC:SiO\textsubscript{x}) films are commercialized under the tradename DYLYN by Belgium based Bekaert company. Current applications of the DYLYN and DYLYN/DLC films include reduction of the friction and wear in car engines, plastic mould components, optical disc mould parts, textile machinery.

DLC:SiO\textsubscript{x} can be used in MEMS technology both as a surface coating material or a structural material. In [24], use of DLN films as a coating material for decrease of the wear and friction of micro components as well as reduction of the sticking between microstructure and the substrate was suggested. SiO\textsubscript{x} containing diamond like carbon film was applied as an effective barrier for protection of the microstructures against stiction during fabrication of surface micromachined electrostatically actuated microelectromechanical switch [74]. Application of the DLC:SiO\textsubscript{x} as a structural material for MEMS fabrication was reported in [32] – DLC:SiO\textsubscript{x} based free-standing cantilevers and bridges were fabricated.

There were suggested to use DLC:SiO\textsubscript{x} film as an antireflective coating of the crystalline Si solar cell [63]. SiO\textsubscript{x} containing DLC films were applied as an imprint stamp antisticking layers in nanoimprint lithography [30, 75]. The feasibility of applying DLN coatings on the
sidewalls of LIGA (lithography, electroplating, and moulding) fabricated microsystem parts by commercial PECVD techniques has been demonstrated in [76]. In such a way problems related with handling of the miniature LIGA parts during deposition were solved.

Cell adhesion, cytotoxicity and macrophage adhesion tests revealed good biocompatibility of the diamond like nanocomposite films [77]. Covering of the stent by DLC:SiOₓ resulted in decreased thrombogenicity and decreased neointimal hyperplasia [78]. While deposition of the additional DLC films resulted in increased inflammatory reaction [78].

CONCLUSIONS

DLC:SiOₓ (diamond like nanocomposite) films are a class of the DLC based composite materials which can consist of the interpenetrating networks of a-C:H and SiOₓ or SiOₓ clusters embedded into the a-C:H matrix. Silicon and oxygen atomic concentration in such films can vary from several percents up to 30–40 percents. DLC:SiOₓ films can be deposited by different PECVD and ion beam deposition techniques. Internal stress in DLC:SiOₓ films is substantially lower than in DLC films, therefore fabrication of the films of thickness of up to 10 micrometers is possible. Toughness of DLC:SiOₓ films is higher than toughness of the hydrogenated DLC films as well. However, in most cases it can be achieved at the cost of the decreased hardness and Young’s modulus. Hardness and Young’s modulus of DLC:SiOₓ can be increased by setting appropriate deposition conditions (ion energy, plasma density) as well as by choosing correct structure and chemical composition. In most cases friction coefficient of the DLC:SiOₓ films is substantially lower than friction coefficient of the hydrogenated DLC films. However, lower friction coefficient alone did not ensure increase of the wear resistance. It seems, that wear resistance of DLC and DLC:SiOₓ films correlates rather with hardness than with the friction coefficient. It should be mentioned, that friction coefficient of DLC:SiOₓ remains low in water as well. It is different behaviour in comparison with DLC films. In such a way resistance to the wear in water of DLC:SiOₓ is substantially higher than wear resistance of DLC. Mechanical properties mentioned above along with the low refractive index and higher transparency compared with the DLC films makes DLC:SiOₓ an attractive choice as a protective films for different optical applications. Contact angle with water of DLC:SiOₓ films can be changed in wide range 56°–100°. Present industrial applications of the DLC:SiOₓ films include low friction wear resistant coatings for increased lifetime of the car engines, plastic mould components, optical disc mould parts, textile machinery parts. Use of these films for different lithography techniques, MEMS fabrication as well as in biomedicine is considered.

Acknowledgments

REFERENCES

