Stability of Strength and Deformation Characteristics of Expanded Polystyrene (EPS) within the Time of Long-Term Investigation of Creep Strain under Permanent Compressive Loading

Saulius VAITKUS *, Ivan GNIP, Sigitas VĖJELIS

Scientific Institute of Thermal Insulation of Vilnius Gediminas Technical University, Linkmenų st. 28, 08217 Vilnius, Lithuania

crossref http://dx.doi.org/10.5755/j01.ms.19.2.4442

Received 18 July 2011; accepted 19 October 2011

The results of investigation of strength (σt0 %, σc) and deformability (E) characteristics of expanded polystyrene specimens are presented. The results are based on the short-term compression in the organization of long-term creep study. For the experiments identical specimens stored 5 years at ambient temperature (23 ±2)°C and relative humidity (50 ±5) % as well specimens after removal long-term loading were used. There were established, that difference between experimental values of stress and initial modulus of tested expanded polystyrene specimens with confidence probability P = 90 % (on-sided test) is negligible (random).

Keywords: expanded polystyrene slabs (EPS), short-term compression, aging, long-term compression.

1. INTRODUCTION

Expanded polystyrene (EPS) due to its availability and satisfactory performance characteristics is commonly used in building structures where it is exposed to various kinds of stresses [1–3]. Long-term compression is the basic type of stress for foamed plastics used as a heat insulation-construction material. Study of stress and strain characteristics of expanded polystyrene under the conditions of long-term exposure to constant compressive stress is of significant interest. It is a common practice in Europe to state during long-term tests of expanded polystyrene products a level of creep strain for correction for 10, 25 and 50 years [4], accordingly, taking into consideration [5], duration of direct experiment should be 122, 304 and 608 days, respectively. At the same time a power equation (Findley W. N.) is used in [5]. It is recommended to substantiate use of other phenomenological functions, according to [5], on the basis of direct experiment lasting at least 5 years [6].

The authors of the article have performed (5 ± 5.4)-year creep tests of expanded polystyrene (EPS) pieces with constantly compressing stress σc equal to (0.25 ± 0.35)σt0 %.

According to [7], long keeping of expanded polystyrene under moderate climate conditions does not cause any significant changes in its mechanical properties. [8] gives results of determination of foamed plastics compressive strength after storage for 10 years in a non-heated site in a region with moderately cold climate. In [8] it is pointed out that most foamed plastics (polyurethane foam, foamed epoxy resins, expanded polystyrene) show significant (up to 30 %) increase of compressive strength in 5 years of aging; further strength of these materials are changing less.

It should be noted that information about the degree of stability of strength and strain characteristics of EPS in time are important for predicting their life durability.

To evaluate stability of mechanical properties of expanded polystyrene (EPS) specimens were tested for short-term compression after 5 year storage during a lengthy experiment. Compression under short loading of thermal insulation materials is main object of studies [9, 10]. Compressible strength of thermal insulation materials is often characterized by its density. When density increases twice, compressible strength increases about 4 times [11].

The aim of the present work is to evaluate the degree of stability of strength and strain characteristics of expanded polystyrene (EPS) boards during long-term experiment of creep according to test results of expanded polystyrene specimens by carrying out creep testing without loading specimens stored during a long-term experiment in the same premises and after removal of compressive stress σc.

2. INVESTIGATION METHODS

Expanded polystyrene boards were studied (Table 1) of EPS 60 – EPS 250 types with density (14 ± 35) kg/m³, made by different manufacturers using expansion technology – confined foaming of bead-type raw materials (hard granules (0.8 ± 2.5) mm of diameter produced by leading European companies “Styrochem” and “BASF”).

As the criterion of evaluation of deformability of boards at constant compressive stress expanded polystyrene creep deformation of specimens in the form of a cube with an edge of 50 mm was used, which was measured using special stands [5, 12] ensuring constancy of applied stress for 2034 days. Each experiment (altogether 15 lots were tested) included results of testing of three specimens of equal density. The direction of compressing stress in respect of the plane of the board from which the specimens were cut was deemed to be perpendicular. The creep deformations were determined
using the method described in [5] with static stress \(\sigma_c \) equal to \((0.25 \pm 0.35)\sigma_{10\%}\). Error of stabilization of long-term compressive stress did not exceed 1 %, while changes in a creep – 0.005 mm. Loading of specimens and reading the indicators were done in accordance with requirements given in [5].

Table 1. The experimental test results of deformability of expanded polystyrene (EPS) specimens at the long-term fixed compressive stress \(\sigma_c \).

<table>
<thead>
<tr>
<th>Test number</th>
<th>Test data of specimens at compression load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term</td>
<td>Long-term</td>
</tr>
<tr>
<td>(\rho_s), kg/m(^3)</td>
<td>(\sigma_{10%}), kPa</td>
</tr>
<tr>
<td>1</td>
<td>16.5</td>
</tr>
<tr>
<td>2</td>
<td>26.6</td>
</tr>
<tr>
<td>3</td>
<td>20.8</td>
</tr>
<tr>
<td>4</td>
<td>27.1</td>
</tr>
<tr>
<td>5</td>
<td>16.5</td>
</tr>
<tr>
<td>6</td>
<td>26.8</td>
</tr>
<tr>
<td>7</td>
<td>20.7</td>
</tr>
<tr>
<td>8</td>
<td>27.1</td>
</tr>
<tr>
<td>9</td>
<td>35.5</td>
</tr>
<tr>
<td>10</td>
<td>30.4</td>
</tr>
<tr>
<td>11</td>
<td>33.1</td>
</tr>
<tr>
<td>12</td>
<td>27.5</td>
</tr>
<tr>
<td>13</td>
<td>21.9</td>
</tr>
<tr>
<td>14</td>
<td>18.5</td>
</tr>
<tr>
<td>15</td>
<td>14.5</td>
</tr>
</tbody>
</table>

*Specimens of series numbers 1–4 are tested at a static stress \(\sigma_c = 0.25\sigma_{10\%} \), series numbers 5–15 – at \(\sigma_c = 0.35\sigma_{10\%} \). Results of study of creep of expanded polystyrene (EPS) boards of 15 lots at long-term compressive stress equal to \((0.25 \pm 0.35)\sigma_{10\%}\) are given in [6]. From [6] the present work uses values of strain \(\varepsilon_c \) arising at the moment of time \(t = 60 \) s from the beginning of application of loading and creep strain \(\varepsilon_c \) developing in the course of time at the moment of ending of the direct experiment \(\varepsilon_c(t_0) \) (Table 1).

All experiments were conducted inside the premises with air temperature of \((23 \pm 2)\)°C and relative humidity – \((50 \pm 5)\) %.

To evaluate stability of strength and strain characteristics of expanded polystyrene within the period of long-term experiments tests were performed for short-term compression of specimens cut from the boards under study. The stress \(\sigma_{10\%} \), corresponding to 10 % compressive strain, the ultimate (critical) stress \(\sigma_c \), upon increase of which quasi-linearity of “loading-deformation” diagram is violated, and the initial modulus of elasticity \(E \) were chosen as testing parameters.

Initial variables of three experimental test specimens in the form of a cube with an edge of 50 mm are presented in Table 2.

\(\sigma_c \) value was taken on the ground of \(\sigma_{10\%} \), found in accordance with data of the 1st test for short-term compression of specimens, which was conducted during organization of long-term experiments in order to study of creep of expanded polystyrene (EPS) boards. Specimens of the 2nd test had been stored (stress-free) within the period of performance of long-term experiments inside the same premises. The 3rd test includes specimens of the long-term experiment after removal of the constant compression stress \(\sigma_c \).

Methods of research of EPS specimens for short-term compression are presented in [13].

3. METHODS OF PROCESSING THE EXPERIMENTAL DATA

Regression analysis of data of short-term compression of specimens was performed with confidence probability \(P = 0.90 \) upon one-sided criterion. A preliminary check of experimental results “on anomaly” was performed on the assumption of one dimensional measurement system [14].

Linear dependencies are taken in this work that are characterized by simplicity of calculations when using and allow finding quantitative values of variables of strength and allow finding quantitative values of variables of strength and strain of expanded polystyrene boards with satisfactory accuracy:

\[
\bar{Y} = b_0 + b_1 \cdot X ,
\]

where \(\bar{Y} \) is an average value of a resulting feature (tested variables); \(X \) is a component feature, for example, density of expanded polystyrene boards; \(b_0, b_1 \) are constant coefficients calculated on the ground of experimental data by the least squared method [14–16].

Proportion of variation of the tested variable \(\bar{Y} \) from variability of controlled input factor \(X \) (for example, density, and stress \(\sigma_{10\%} \)) is presented by determination coefficient \(R^2_{yy} \) (squared coefficient of correlation \(R_{yy} \)).

Standard deviation \(S_r \) is taken as a means of spreading observation data around empirical regression line (absolute value of average measure of evasion of experimental results from regression line, constant for all its segments):

\[
S_r = \sqrt{\frac{\sum_{i=1}^{n} (Y_{i} - \bar{Y}_i)^2}{n - m}} ,
\]

where \(Y_i, \bar{Y}_i \) is an actual \(i \) value of a resulting feature calculated according to the equation (1); \(n \) is a number of experiments (definitions); \(m \) is a number of evaluated constant parameters in the empirical equation \((m = 2 \) for the linear equation).

Besides a predictive resulting feature in the form of one numerical value (pointwise prediction value \(\bar{Y}_i \)), possible variable of error \(\delta \), which allows passing to interval prediction with one-sided upper maximum boundary and lower minimum boundary, was also calculated:

\[
y_{s, i} = \bar{Y}_i \pm \delta .
\]

According to [17]

\[
\delta = t_{a;f} \cdot S_r ,
\]

where \(t_{a;f} \) is Student’s criterion, value of which was chosen for confidence probability \(P = 0.90 \) (upon one-sided criterion) depending on so-called number of degrees of freedom \(f = n - m \) [18].
Table 2. The initial data and results of testing for short-term compression experimental specimens of EPS

<table>
<thead>
<tr>
<th>Number of experimental specimen</th>
<th>Number of creep tests (Tab. 1 see)</th>
<th>Initial data of specimens</th>
<th>Data of the specimens tested for short-term compression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of samples</td>
<td>Change of density from-to, kg/m³</td>
<td>$\rho^1 \pm \Delta \rho$, kg/m³</td>
</tr>
<tr>
<td>1</td>
<td>1; 5</td>
<td>12</td>
<td>16.2 – 17.1</td>
</tr>
<tr>
<td></td>
<td>2; 6</td>
<td>23</td>
<td>26.5 – 27.1</td>
</tr>
<tr>
<td></td>
<td>3; 7</td>
<td>24</td>
<td>19.8 – 21.7</td>
</tr>
<tr>
<td></td>
<td>4; 8</td>
<td>6</td>
<td>25.9 – 27.2</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>16</td>
<td>33.2 – 36.6</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>18</td>
<td>29.8 – 33.8</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>13</td>
<td>32.5 – 35.7</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>14</td>
<td>26.1 – 29.2</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>9</td>
<td>20.7 – 23.6</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>7</td>
<td>16.6 – 18.1</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>7</td>
<td>13.9 – 15.0</td>
</tr>
<tr>
<td>2</td>
<td>1; 5</td>
<td>7</td>
<td>14.8 – 16.8</td>
</tr>
<tr>
<td></td>
<td>3; 7</td>
<td>8</td>
<td>19.2 – 21.4</td>
</tr>
<tr>
<td></td>
<td>4; 8</td>
<td>9</td>
<td>24.9 – 26.6</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7</td>
<td>29.8 – 31.9</td>
</tr>
<tr>
<td>3</td>
<td>1; 5; 14; 15</td>
<td>11</td>
<td>14.5 – 18.7</td>
</tr>
<tr>
<td></td>
<td>3; 7; 13</td>
<td>9</td>
<td>20.4 – 22.1</td>
</tr>
<tr>
<td></td>
<td>2; 6</td>
<td>9</td>
<td>26.4 – 27.6</td>
</tr>
<tr>
<td></td>
<td>4; 8; 9; 10; 11</td>
<td>15</td>
<td>29.0 – 35.6</td>
</tr>
</tbody>
</table>

а Specimens: 1 – specimens tested at the organization of researches of creep of expanded polystyrene (EPS); 2 – not weighted specimens stored during time of carrying out of the long-term experiment in the same premise; 3 – specimens after removal of compressing stress in 5 years. b Average value and its confidential estimation with reliability 0.95. c In brackets the quantity of specimens n according to which is calculated the average value with a confidential estimate (in other cases n is the column of the table see).

4. TESTS RESULTS AND DISCUSSION

Diagrams of deformation of expanded polystyrene specimens during compression are presented in Fig. 1. Diagrams of compression are curvilinear. Specific inflection is observed, so it may be conventionally considered that they consist of two segments. Distinguished points define different mechanical conditions of specimens. Dependence of deformation from the stress close to linear is observed in the initial segment. In the second segment a significant deformation increment is observed with low raise of loading. Distinguished points correspond to ultimate (critical) stresses σ_{cr}, upon reaching of which behaviour of macrostructure of expanded polystyrene products changes [11].

Results of statistical processing of experimental values of strength and strain characteristics of expanded polystyrene boards’ specimens are presented in Tables 3 ÷ 5 (constant coefficients b_0, b_1 of regression equations (5) ÷ (20) of dependence (1), mean square deviations S, calculated on the ground of experimental data, coefficients of determination R_{xy}, and values δ are given to determine one-sided confidence interval of predicted value of

![Fig. 1. The variation of relative strains of expanded polystyrene specimens under compression. The numbers on the line - number of experimental specimens in Table 2. Density of specimens, kg/m³: 1, 2 – 25.8; 3 – 26.5. Dots + indicate the experimental values of the ultimate (critical) stress σ_{cr} (see the axis of ordinates)](image-url)
The variation of values for regression equations (5), (11), (16) testifies that expanded polystyrene boards during short-term deformations

Table 3. The results of statistical data processing of tests of specimens EPS on short-term compression at the experiment organisation on creep testing

<table>
<thead>
<tr>
<th>Number of tests (estimations)</th>
<th>Average value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient b_0</td>
<td>-57.3</td>
</tr>
<tr>
<td>Coefficient b_1</td>
<td>8.64</td>
</tr>
<tr>
<td>Standard deviation S_r (kPa)</td>
<td>6.99</td>
</tr>
<tr>
<td>Determination coefficient R^2_{xy}</td>
<td>0.985</td>
</tr>
<tr>
<td>$\delta^0 = t_\alpha S_r$ (kPa)</td>
<td>9.00</td>
</tr>
</tbody>
</table>

aDependence (1). bOne-sided confidence interval for the predictive assessment of result with a confidence probability $P \equiv 1 - \alpha = 0.90$. cThe initial modulus of elasticity on initial deformations δ_0 at loading specimens compressive stress σ_c. Value $E_{(i)} = \sigma_c / \sigma_0$, kPa, where i – the number of test on Table 1.

Table 4. The results of statistical data processing of tests for short-term compression of specimens EPS stored in not loaded state during research on creep of years ($t_n = 5$ years)

<table>
<thead>
<tr>
<th>Correlated parameters and the number of regression equationa</th>
<th>Average value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient b_0</td>
<td>-55.3</td>
</tr>
<tr>
<td>Coefficient b_1</td>
<td>8.78</td>
</tr>
<tr>
<td>Standard deviation S_r (kPa)</td>
<td>6.30</td>
</tr>
<tr>
<td>Determination coefficient R^2_{xy}</td>
<td>0.984</td>
</tr>
<tr>
<td>$\delta^0 = t_\alpha S_r$ (kPa)</td>
<td>8.26</td>
</tr>
</tbody>
</table>

aSee Table 3.

Value of the coefficient of determination for regression equations (7), (13), (18) testifies that variation of values of the initial modulus of elasticity E is in average 94% conditioned by change of their stress $\sigma_{10\%}$ and only (2 + 8)% – by other factors (see variables of regression equations (7), (13), (18) in Tables 3 + 5) [20].

Based on results of determination of specimens’ density ρ experimental values and regression lines of values $\sigma_{10\%}, \sigma_c$ are presented in Fig. 2 and 3.

It can be seen from the Fig. 2 that regression lines 2, 3 are within confidence interval of the regression line 1 (one-sided, with minimal predicted values, and thus pointwise (average) values $\sigma_{10\%}$ and σ_c of three experimental tests do not contradict each other, i.e. change of strength variables $\sigma_{10\%}$ and σ_c on the basis of tests cannot be considered significant [21]. For instance, values $\sigma_{10\%}$ of specimens in the 2nd test with density of 14 kg/m3 and 38 kg/m3 (variation interval for tested specimens) only exceed values of specimens in the 1st test in average by 6.1% and 2.7%, respectively. $\sigma_{10\%}$ of specimens in the 3rd test with the same density differs by only (–1.9) % and (+2.1) % in comparison to specimens in the 1st test. Values σ_c may be directly compared from the Figure 3 or regression equations (8), (14), and (19) presented in Tables 3 + 5.

Table 5. The results of statistical data processing of tests for short-term compression of specimens EPS after removal of stationary compressing strain σ_c in 5 years

<table>
<thead>
<tr>
<th>Number of tests (estimations)</th>
<th>Average value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient b_0</td>
<td>-62.4</td>
</tr>
<tr>
<td>Coefficient b_1</td>
<td>8.92</td>
</tr>
<tr>
<td>Standard deviation S_r (kPa)</td>
<td>6.53</td>
</tr>
<tr>
<td>Determination coefficient R^2_{xy}</td>
<td>0.988</td>
</tr>
<tr>
<td>$\delta^0 = t_\alpha S_r$ (kPa)</td>
<td>8.48</td>
</tr>
</tbody>
</table>

aSee Table 3.
Based on results of determination of $\bar{\sigma}_{10\%}$ (its value according to [4]) is the essential variable of strength of expanded polystyrene (EPS) products during compressive strength) of experimental values and regression lines of values σ_{cr} and E are presented in Figs. 5 and 6. For boards of types from EPS 100 to EPS 250 values σ_{cr} of specimens in the 2nd test and values σ_{cr} of specimens in the 3rd test are in average from 13.5 % to 5.4 % and from 10.6 % to 2.8 %, respectively, less in comparison to data of compression tests of specimens in the 1st test. The Fig. 5 illustrates non-contradiction of results σ_{cr} determined by regression equations (6), (12), (17) given in Tables 3 \textit{÷} 5.

In accordance with test results for specimens in the 2nd test values of the initial modulus of elasticity E for expanded polystyrene boards of types from EPS 80 to EPS 120 are in average from 9.7 % to 2.5 % less in comparison to test data of specimens in the 1st test; and for expanded polystyrene boards of types from EPS 150 to EPS 250 such values are greater in comparison to test data of specimens in the 1st test. In accordance with test results for specimens in the 3rd experimental test the pointwise value E for expanded polystyrene boards of types from EPS 80 to EPS 120 is in average from 21.5 % to 4.4 % less (stays within one-sided
confidence interval of the regression line 1), and for boards
EPS 200 and EPS 250 is 0.4 and 3.3 greater in comparison
to test results of specimens in the 1st test. In case of use of
regression for evaluation of prediction values a confidence
coefficient is usually taken 90 % (one-sided criterion) [17].
Thus, degree of coincidence of calculation results for
pointwise values \(E \) based on regression equations (7),
(13), (18) (see Tables 3 - 5) can be regarded as satisfactory
(see Fig. 6).

Pointwise values of the initial modulus of elasticity \(E \)
received as a result of initial deformation upon loading of
specimens in the 3rd experimental test by compressive stress \(\sigma_{c} \),
which is equal \((0.25 \div 0.35)\sigma_{0.05} \) (approximated
by a regression equation (10)), calculated by regression
equations (9), (15), (20) in Tables 3 - 5, and filled by
numerical parameters on the basis of experimental results
for each of three experimental tests belong to the field of
values of the initial modulus of elasticity \(E \) of specimens
tested during organization of long-term study, which
means that they conventionally satisfy non-contradiction
[21], i.e. discrepancy of results \(E \) in all mentioned cases
cannot be considered significant.

5. CONCLUSIONS

On the basis of performed research empirical
equations were given for evaluation of strength \((\sigma_{0.05},
\sigma_{c}) \) and strain \((E) \) characteristics during short-term
compression of specimens of expanded polystyrene (EPS)
boards with density from 14 kg/m\(^3\) to 35 kg/m\(^3\). For each
equation possible variable of error \(\delta \) is given, which allows
passing to interval prediction of stress and strain characteristics
of expanded polystyrene boards.

It was shown that at confidence probability \(P = 90 \%
\) (one-sided criterion) results of calculation of stress \(\sigma_{0.05},
\sigma_{c} \), and strain \(E \) based on results of determination of density \(\rho \) of expanded polystyrene specimens tested: carrying out creep testing; stress-
free specimens stored during a long-term experiment in the
same premises; specimens after removal of compressing stress \(\sigma_{c} \)
in 5 years – are consistent, i.e. discrepancy of their average values is insignificant (random).

Results of calculation by regressive equations (6), (7),
(12), (13), (17), (18) of ultimate (critical) stress \(\sigma_{cr} \)
and the initial modulus of elasticity \(E \) based on experimental
values of stress \(\sigma_{0.05} \) for specimens tested: during a long-
term experiment; stress-free specimens stored during a
long-term experiment in the same premises; after removal
of compressing stress \(\sigma_{c} \) in 5 years – comply with the
requirement of non-contradiction at confidence probability
\(P = 90 \% \) (one-sided criterion), i.e. their discrepancy is
random.

REFERENCES

1. Duiškis, M. Materials Research on EPS 20 and EPS 15 under
Representative Conditions in Pavement Structures

2. Beimbrech, G., Hillmann, R. EPS in Road Construction –
Current Situatio in Germany Geotextiles and

3. Horwath, J. S. The Compressible Inclusion Function of EPS
Geofoam Geotextiles and Geomembranes 15 1997:
pp. 77 – 120.

4. EN 13163:2008 E. Thermal Insulating Products for Building
Applications. Factory Made Products of Expanded
Polystyrene (EPS) Specification. European Committee for

European Committee for Standardisation: 2006.

Description of the Creep of Expanded Polystyrene (EPS)
under Long-Term Compressive Loading Polymer Testing 30

7. Pavlov, V. A. Expanded Polystyrene. Moscow, Chemistry,

8. Dementyev, A. G., Tarakanov, O. G. Structure and
Properties Expanded Polystyrene. Moscow, Chemistry,

of Interlaboratory Testing Results of Rock Wool Products
Materials Science (Medžiagotyra) 15 (4) 2009:
pp. 377 – 382.

10. Dikavičius, V., Miškinis, K., Stankevičius, V. Influence of
Mechanical Deformation on Compressive Strength of Open
and Closed Cells Resilient Polystyrene Materials Science
(Medžiagotyra) 16 (3) 2010: pp. 268 – 271.

11. Gnip, I., Keršulis, V., Vaitkus, S., Vėjelis, S. Assessment of
Strength Under Compression of Expanded Polystyrene (EPS)
Slabs Materials Science (Medžiagotyra) 10 (4) 2004:

12. Gnip, I., Vaitkus, S., Keršulis, V., Vejelis, S. Predicting the
Deformability of Mineral Wool Slabsunder Constant
Compressive Stress Construction and Building Materials

Deformability Of Expanded Polystyrene Under Short-Term
Compression Mechanics of Composite Materials 43 (5)

Application of Methods of Correlation and Regression
Analyses to Processing Experimental Results. Moscow,

http://www.statsoft.com/textbook/statshome.html
(accessed 21.03.11).

598 p. (in Russian).

19. Lewis, K. D. Methods for Predicting Economics Indicators.

20. Lakin, G. F. Biometry. Moscow, Vysshaya Shkola,

21. Bobrovnikov, G. N., Klebanov, A. I. Prediction in
Controlling the Technological Level and Quality of
(in Russian).